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Motivations

« Explosion of Deep Learning (DL)
 Effectiveness in a variety of applications
 Long training time limits the development of new DL applications
« Training GPT-3 model takes 355 years on a V100 GPU server
and cost $4.6M
 Parallel training on Supercomputer / HPC systems
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Illustration of data parallelism with Supercomputer 11



Long Training Time Limits the Development of

New Deep Learning A

Training at supercomputer /datacenter

over hours/days/weeks

Input: Lots of
Labeled data

!

A Deep Neural
Network
(DNN) model

-

Find parameter W to minimize the loss

Output: trained
model

function L(W)
B
w=w — %; vL(W)

F(W)

pplications

in a second

97% Nguyen
3% Mr. A

Inference at endpoint (mobile phone)

New input
from Camera

!

Trained Deep
Learning
Model

|

Output: face
recognition
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Challenges of Training DNN in New Domains

Recent well-known

Input: lots of
Labeled data

application

ﬂ

A Deep Neural
Network (DNN)
model

J

Output: trained
model

ﬁ Bigger input
Ak . (dataset/samples)
100 KB
(100x100 pixel)
RESNET50
(~60M param.) Deeper, bigger
: DNN model
Inceptionv3

(~40M param.)

1

New domain

.' High-resolution
image ~MBs
(2K x 2K pixel)

RESNET1001
(> XOM param.)

AmoebaNet @Google
(~ 600M param.)

’s application

Multi-dimensions ,
e.g., 2 GB/sample
in cosmology [1]

Megatron-ML (8.3B
param.), Turing-NLG

(17B param.), GPT-3
(175B) from Natural

Language Processing

Scalability Problems

Huge communication /data @Lack of memory capacity @
a

movement overhead

Maintain the
pplication accuracy




Stack for Distributed DNN Training

HOW - Research Goal and Approach

Goal: enable training DNNs on large-scale HPC system in the magnitude of hours.

Applications (e.g., DNN model)

v

Frameworks (e.g., TensorFlow)

v

Parallel Computing

1
A 4

Communication
(e.g., MPI)

Supercomputer/Cluster

Technical Goal: @ Less Memory @ Faster @Accuracy

Question: Design high-performance optimization/ method
Goal: é’D
Topics: Shuffling, 2" order method, pruning model

Question: What is the best parallelization strategy?

Goal:@@@

Topics: Data parallelism =» New parallelism approach

Question: How to reduce the communication time?

Goal: @@

Topics: Topology-aware, data compression, overlapping

Question: How do the network architectures effect the per.
Goal:
Topics: Network topology, inter-node link bandwidth
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Bigger Dataset - 1/0 Challenges

« Random access with Global Shuffling each epoch
« Number of input files is large (millions - billions)

 File size is also big, e.g., Cosmoflow
« Load the whole dataset into local storage before training
Problems: Dataset size is bigger than local storage (e.g., SSD)
« Bad performance with PFS
» Related work: Local Shuffling

Parallel File
System

1,000,000
YouTube-8M raw (360TB) 160
100,000 140 -
JFT-300M (41T8B)
15,400 Google OI (18TB) =120 |

100 A

1,600 1,600 1,600 1,600 ImageNet21k (1.8TB)

10,000 C4 (7TB)
DeepCAM (3.5TB)

1,000
500 FieldSafe (400GB)
150 ImageNet (140GB)
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10 7
1
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D
o
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o
o
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* - Systems designed for deep learning workloads ) 17






Targeted Communication Model

» Synchronous: communication start when the computation are finished at all the
computing nodes.

GPU1 GPU2 GPU P-1 GPU P
I\

1. Reduce G;to ||| [

Parameter Server ﬁ%ﬂ
P
G = Z Gi E—(E)»DI GT\|U2 | | GPLKIP-l Al GP'\LIJP | N
i=1

GPU2 GPUP-1 GPU P
2. Broadcast the o oz | [ crura -
global update G Lt L ' : AL '

Distributed model (our target)
Parameter Server model (Allreduce)

(Reduce + Broadcast)

Distributed Communication becomes practical
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Limitation of Data Parallelism in Future

Recent well-known application

RESNET50
(~60M param.)

Inceptionv3

(~40M param.)

Larger

message size

New domain’s application

RESNET1001
(> XOM param.)

Megatron-ML (8.3B
param.), Turing-NLG

(17B param.), GPT-3
(175B) from Natural

Language Processing

AmoebaNet @Google
(~ 600M param.)

Larger scale (number of GPUs)
From 10s GPUs to 1000s GPUs

Strong scalin Weak scalin
018 - " 9 -8 600 — 9 -12

HEl Computation
0.16 — HEM Communication
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5
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g
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Mini-LlalCh time (s)
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ha
8
1

#GPUs

[*1.

-

=

Communication becomes bottleneck }

[*] Dryden, Nikoli, et al. “Aluminum: An asynchronous, GPU-aware communication library optimized for large-scale training of

deep neural networks on HPC systems”, MLHPC 2018.
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_arge-Scale Distributed Deep Learning

GPU GPU
3 2

(a) Intra-node network

Latency factor
2P — ) G

Bandwidth factor
2(P —1)N

P

inter

(b) Non-blocking Two-level Fat-tree

(up to 3888 NICs)

—— PCIe3.0 NVLINK InfiniBand (IB) === IBx2  ====== IBx3 == IBx36 Ring-based path
To NICs/InfiniBands L3-SWi#1 (648 ports) L3-SWH9
PLX Switch PLX Switch
! ! L2-SW #1 L2-SW #9 L2-SW il L2-SW #10 L2-SW #18
GPU GPU (648 ports)
e e T~ -1 T~ P |
0 1 T, ot 1 .‘.."I- &" 1 1 ..""-u. "’ 1
e’ i Syz” I I Sog” I
P ad " I o NOR
.o‘... . oy L" ~~LI 1 " ‘“J
L1-SW#1 L1-SW L1-SW L1-SW
L1-SWi1 L1-SW#216 (36ports) #162 #163 4324

18 down links/switch to NICs (computing nodes)
(c) Non-blocking Three-level Fat-tree (up to 5832 NICs)

Network Latency Bandwidth
factor () | factor ()
8x10-1!

(12.5 GB/s)

6.25%101!
(16 GB/s)

2x10°1!
(50 GB/s)

IB switch 90 -—400 ns
and links per switch
PLX switch 110 ns

+ PCle per switch
NVLINK  ~9us

Inter-node communication
becomes bottlenecks
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Stack for Distributed DNN Training

Approach 1: Communication Algorithm

Goal: enable training DNNs on large-scale HPC system in the magnitude of hours.

Applications (e.g., DNN model)

v

Frameworks (e.g., TensorFlow)

v

Parallel Computing

1
A 4

Communication
(e.g., MPI)

Supercomputer/Cluster

Technical Goal: @ Less Memory @ Faster @Accuracy

Question: Design high-performance optimization/ method
Goal: é’D
Topics: Shuffling, 2" order method, pruning model

Question: What is the best parallelization strategy?

Goal:@@@

Topics: Data parallelism =» New parallelism approach

Question: How to reduce the communication time?

Goal: @@

Topics: Topology-aware, data compression, overlapping

Question: How do the network architectures effect the per.
Goal:
Topics: Network topology, inter-node link bandwidth
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Optimizing Message Passing Algorithms
Problem: High communication time due to (1) large message size and (2) larger scale
Task: Study the method to reduce the communication time while maintain the accuracy

€9 Bandwidth-Optimal
| Algorithm (Ring-based)

-

Omni-pg_th_§p§2c Switch Omni-path Spine Switch
— -

algorithms

‘ 0 Architecture-aware

/
[ Leafﬁch l

7~ S\
| LeafS‘tch | Leaf\§witch
/" ] ] -.‘\\\‘
1
)

Our proposal

______

Latency factor Latency factor -
Z(P - 1) Ainter 2(k — 1)aintra+2(E — Dainter
BandWidth faCtOI‘ Bandwidth factor
2(P—-1)N 2(k— 1) 2(P — k)N
T inter i NBintra + TEBMCET

[2] N. T. Truong, M. Wahib, and R. Takano, "Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", in Concurrency and
Computation Practice and Experience, Special Issue on Parallel and Distributed Computing and Networking (CCPE) 24




Data Compression

Sub-issues of sparcification:

(1) Ineffective pair-wise communication algorithm
(2) Computation overhead of top-k select algorithm

Original approach

Data Compression (our target)

Comm./Comp

€9 Regular dense data

0 Irregular sparse data Q Mixed data representation
100x-1000x compressed 10-100x compressed [3] (reduce

/ Our proposal

0 Architecture-aware
algorithms

(data overhead) ~50%) (data overhead)
6 Ineffecti . 0 Architecture-aware algorithms
NETTective pair-wise [2] (reduce up to 45% comm.
algorithm (all to all) time)

= Large message size Unstructured Sparsification: ~ Quantization: reduce the overlapping Symc
= 100-1000s MB reduce the number of number of bits/ 1 parameter g\“}é 1
parameters (top-k selected) Comm. 123
— 0 — I OclT 1] \ A
k N value | Y o indices | B “
N values N values /¢ = T\ VaIUES BW R
7 ~0.1-1% values overhead Comm. 1
g Computation of top-k selection

[31 N.T. Truong, “Topology-aware Sparse Allreduce for Large-scale Deep Learning”, 38th IEEE International Performance Computing and
Communications Conference (IPCCC), Oct 2019
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Sparcification with Mixed Data Representation

Target: Reduce the communicated message size with Data Compression

Idea: Compress the message

Communication Challenges: Unknown overlapping of the subsets between GPUs

GPU1

Baseline
» Can not use ring-based Reduce
» Use pair-wise communication

GPU2

| ]
AY

GPUP-1

=

GPUP

| =

=G
-[ Decomp ]— ‘

GPUi

=

Cost Send all data in O(P) steps

2(P-1)a +2(P—1)N,B

Proposed Method
« Dynamically switch between sparse data format
and dense data format

Dense data format . —
| ] N;=N X se %
Sparse data format oo
I3  N,=Nn(se+ si) T m

» Fundamental operations: SPLIT, SUM, COPY
SMALL EXTRA COMPUTATION vy (<10%)

<2(P-Da +XDMNpgey




Stack for Distributed DNN Training

Approach 2: Algorithm-Architecture Codesign

Goal: enable training DNNs on large-scale HPC system in the magnitude of hours.

Applications (e.g., DNN model)

v

Frameworks (e.g., TensorFlow)

v

Parallel Computing

1
A 4

Communication
(e.g., MPI)

Supercomputer/Cluster

Technical Goal: @ Less Memory @ Faster @Accuracy

Question: Design high-performance optimization/ method
Goal: é’D
Topics: Shuffling, 2" order method, pruning model

Question: What is the best parallelization strategy?

Goal:@@@

Topics: Data parallelism =» New parallelism approach

Question: How to reduce the communication time?

Goal: @@

Topics: Topology-aware, data compression, overlapping

Question: How do the network architectures effect the per.

Goal:
Topics: Network topology, inter-node link bandwidth
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Network Congestion

Problem: Number of involved GPUs (P) increase
* Ring-based algorithm O(P)a: latency factor increase.
 Halving-Doubling algorithms O(logP)a: network

congestion @ =
Xle Xis Xie X{g Xfa XPg Xig Xis

Proposal: Distributed Loop Network topology  Shilfted Halving — Doubling Algorithm

LﬁﬂML,{i__k____ SW2 :;;i::><::§i;
"""""" Length-1 shortcut ~ —— TLength-2 shorteut ~ —— Length-4 shorteut I
—— Length-8 shortcut Length-29! shorteut —— To compute node H) éb @) é-) @ é) &

1+2¢1
x1-8 x1-8 xi-8 xi-% xi% x!-% Xx37% Xg7®

2cz= 7 /—\ 8= '\_/‘ .  ox .
223 5 xiop xi=§ xdzh X3P xdTE x278 X7%§ X34

209 [+ 2@ |- 2Q | 1 2 3 e 4

2° downlinks \

1 5 3 6 2 7 4 8
Xi—g Xi_g Xi_g Xi—s Xig Xi-g Xi_g Xi-g

[4] N.T. Truong, et. al. “An Algorithm and System Co-design for Large-Scale Training of Distributed Deep Learning”, CCGRID 2021

e 1_2 5_6 3 4 3 4. . t. _
I X124 X1,2,5,6 XiZ4 X3 178 X Xl 256 X278 X3 178 communication

Inter-switch links

Physical path +—*
Logical path o

Intra-switches |
communication
in log2?P steps

Inter-switches

in log2? steps
with SHD




Micro-benchmark Result JBeter

Simulation result on ABCI

v" DLN_RIing slightly better FatTree_Ring 2-5%

v" DLN_SHD significantly better than FatTree Ring: 31%, 71%, and 90%
v' DLN_SHD better than FatTree_ HD: ~ 50%

v' DLN_SHD better than DLN_HD: ~ 25%

03

045
©— FatTree_Ring i 03 @— FatTree_Ring ©— FatTree_Ring |
25 | -@-FatTree_HD ! To5 | —@-FatTree_HD % *4 | - -FatTree_HD =R 90%
@ -2--DLN_Ring H ° -+~-DLN_Ring 1% Eo.as 1 =+=-DLN_Ring /
[ - - !
F 02 { —0—DLN_HD ! E 02 | —0—DLN_HD ® _@_.-@’ ° | & o3 {—o—DLN_HD /
£ —o—DLN_SHD ' 31% | —o—DLN_SHD r €, 55 | ——DLN_SHD 4
— - 4 oU. k
+0.15 20.15 A [ 5 ﬂ
L [ 27% |& A AT 54% | 802 /
c = ! J = i
E 0.1 S 0.1 - ! 50.15 . J
E E ‘ 26% | € 01 ,‘d
20.05 00.05 =] ey 2
© o Og 05 G—<@=0r—"0 -y 52
= — 25%
0 o ] Y T r r 0 Y - T i
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Message size (MB) Message size (MB) Message size (MB)
256 GPUs 512 GPUs 1K GPUs
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High-bandwidth Link: Hybrid Switching System for DL

« Small flows use EPS (electric packet switching)

» Big flows use OPS (optical circuit switching) such as data of DL
« Logical-ring algorithm never change the pattern
* No-need of reconfiguration

Electrical Packet Switches Optical Circuit Switches :’ ‘: Computing node

Reconfigurable Optical
Circuit Switches

_____

Multi Layer Electrical Switch System Electrical and Optical Hybrid Switch System

[5] N.T. Truong, et. al. “On the Feasibility of Hybrid Electrical/Optical Switch Architecture for Large-Scale Training of Distributed Deep
Learning ”,PHOTONICS, 2019






Stack for Distributed DNN Training

HOW - Research Goal and Approach

Goal: enable training DNNs on large-scale HPC system in the magnitude of hours.

Applications (e.g., DNN model)

v

Frameworks (e.g., TensorFlow)

v

Parallel Computing

1
A 4

Communication
(e.g., MPI)

Supercomputer/Cluster

Technical Goal: @ Less Memory @ Faster @Accuracy

Question: Design high-performance optimization/ method
Goal: é’D
Topics: Shuffling, 2" order method, pruning model

Question: What is the best parallelization strategy?

Goal:@@@

Topics: Data parallelism =» New parallelism approach

Question: How to reduce the communication time?

Goal: @@

Topics: Topology-aware, data compression, overlapping

Question: How do the network architectures effect the per.
Goal:
Topics: Network topology, inter-node link bandwidth
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Memory Really a Limiting Factor?

= Yes!
= Examples:
= Larger models:
= Megatron-LM: 8.3B parameters O(10) GBs
= ZeRO-2: 170B parameters O(100) GBs

= Larger Samples: Common in scientific datasets
= CosmoFlow: ~2GB/sample O(100) GBs for act. 1%t layer

= \WWhen Increasing mini-batch size
= Can go up to 127K with methods such as K-FAC



Solutions?

Use More Memory/ Node or GPUs!
In-efficient use of resources

Out-Of-Core Methods Explicit Model-parallelism

- More sensitive to co-located jobs Ve - Constructing a cost model that is accurate

_Hiah i - -Ve
- Tricky when no local DRAM/SSD High implementation cost

- Simplicity of data parallelism
- No changes to model/framework  +y/e
- No messing with Batch Norm (BN)

- Analytical: deterministic +Ve
- Low overhead

35



Out-of-core to Overcome Memory Limitation

* Problem: Model size bigger than GPU’s memory
« 100s TB as in GPT-3 vs. 32GB HBM?2

* Proposal: OOC in DNN is intuitively swapping layer
» Move finished layer to CPU memory
* Redundantly recompute in backward pass

Swap-in 7+6—=+5—=4—+3—-2->1
Swap-out 123 a5 e 7l . T e
X B T e e T L 4 FY LY . A A A
Processing 1+2+3—>4+>5+6>7+8+8 ————> 7 —+6—5—4 —3 =2 =1
Layer Layer Layer Data Wasted Time
—
(Forward) (Backward) (Swapped) Dependency (waiting for swap)

Original Code | | i #ehan gt ]
I — —
IZ‘Jre endenc N E 2z ﬁ 2 3 ﬁ .
| Cotonieney | B B>abE> B0 g B o508
b 2 3 | 8 ¥ ®E 3 = E
Memory Device
Extract | 7x7 Conv, 64 | 12 MB Memory | 16GB
l 1x1 Conv, 256 | 36 MB FLOPS 14.7TF
|_Metadata | Via inotrurnentation Via Device Query
(2] ' Compute Network
Input + . | 7x7 Conv, 64 | 12MB AllReduce | 64 MB
Constraints . | 1xd Conv, 256 | 36MB 128GPUs | 10us
Via Static 'Anﬂ);;is Via Benchmarks
v R
Optimization Two-tier | Qccupancy Model
Problem ILP Problem I Max Z{Jcmpamjn i
I@ Identify
\ 4
Best Blocking +
Recompute
@ | Constnct
v
Execution | - :
‘ Plan _F1> F2||S™2 > F3 > B3||S™ > F2 > B2 > Bt
Generate

-

KARMA

h 4

[ NewCode |

import torch
import torch.nn as nn

outputs = newmodel{images)

]

[6] Mohamed Wahib, Haoyu Zhang, Truong Thao Nguyen, Aleksandr Drozd, Jens Domke, Linggi Zhang, Ryousei Takano, Satoshi Matsuoka,“Scaling
Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA?”, Supercomputing 2020
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Solutions (2)

Use More Memory/ Node or GPUs!
In-efficient use of resources

Out-Of-Core Methods Explicit Model-parallelism

- More sensitive to co-located jobs Ve - Constructing a cost model that is accurate

_Hiah i - -Ve
- Tricky when no local DRAM/SSD High implementation cost

- Simplicity of data parallelism
- No changes to model/framework  +y/e
- No messing with Batch Norm (BN)

- Analytical: deterministic +Ve
- Low overhead
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Strategies for Distributed Training

v Formally defines possible pure parallelism strategies for Distributed Deep Learning:
» Data, Spatial, Layer, Channel, Filter, Hybrid (combine of data with others)

Channel/Filter parallelism: Layer (Pipe) parallelism:

) a vertically split the DNN horizontally split the DNN
Spatial parallelism model model
split a sample (input)

Data parallelism
split the dataset (input)

GPU
’ J

———h_ ———

Allreduce w

D samples
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Model Parallelism for CNN

Filter Parallelism

D samples

Channel Parallelism

D samples

I =

| =] F

| p
L__ji____________]f _____
bAllreduce (dL/dx), Allgather
"__{,';' -

F

|- —

p

Wil*.p.*]

o

X.-[*,p, *) W[p,*,*] Wu[*.*.*]




Performance and Memory Projection

User’s constraints (fixed / maximum number of PEs) Parallelism
B~ RnH - - - Dataset Specification strategies
v" Proposed an initial analysis/estimation model (Sampl ize, mumber ofsanples) | | D-1%3 Computation
samples Time
] DNN model Specification
Support many CNN, transformer (GEMM) Nerwert sy wvexosd) | oo
H : Layer dimensions, e.g., x, y, w. C,F, KxK -
= Based on an Ideal Parameterization Complexity e FLOPcoumts | | i oy | | on Time
Computer System Specification Max memory
Architecture breakdown per PE i
» Interconnect hierarchy
Bandwidth and latency av o .
Processing Element Specification Max. number
* Computation speed (FLOPS) — — of PEs
*  Memory capacity B o
Computation Time Tty Communication Time T.ormm Maximum Memory Per PE Number of PEs p
seial | DXE, (FWi+BwW,)+ 5%, (wuy) | o 296 2%, (Blail+lul) +lwl) | p=1
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[7] Nguyen T. Truong, et. al. “"An Oracle for Guiding Large-Scale Model/Hybrid Training of Convolutional Neural Networks”, HPDC 2021
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Improving the Estimation Accuracy?

Data (b=32) __ Filter (h-32) Channel (h=32) Data+tfilter (h=32) Datatspatial (b=32) Estimation accuracy
IS not good (average
~60%), especially in
communication

g 5 (g
th o= b N b W

VGGI16

b = b L W
PR T T T

4 [ 8]16[32]64 418 |16[32]64 16| 32 | 64 [128]256]|512| IK

Different latency a and bandwidth factors § = Empirical Parameterization
= Computation parameters (FW,, BW,,and WU,)
=  Communication parameter (a and B): use NCCL-test, OSU benchmarks

To NICs/InfiniBands

Network contention - Self-contention modeling

» Introduce contention penalty coefficient ¢, =

» Using dynamic contention graphs [1] to detect contention L
Network congestion—> Detach it in the empirical result (]

*  Report minimum communication time Self-contention in hybrid
» Congestion impact factor using benchmark [2] parallelism with ¢ = 2

[1] Maxim Martinasso et al. 2011. A ~"Contention-Aware Performance Model for HPC-Based Networks: A Case Study of the InfiniBand Network.
In Euro-Par 2011 Parallel Processing.”

[2] Sudheer Chunduri et al. 2019. GPCNeT: Designing a Benchmark Suite for Inducing and Measuring Contention in HPC Networks (SC ’19)
[HPDC] Truong Thao Nguyen, et al. “An Oracle for Characterizing and Guiding Large-Scale Training of Deep Neural Networks,” ACM Symposium on
High-Performance Parallel and Distributed Computing (HPDC2021) (to be appeared) 41




Final Projection Result

. ParaDL_Computation ParaDL._Communication D Measured_Computation |:| Measured Communication 5: samples/GPU or samples/node in hybrid parallelism
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Limits/Bottlenecks of Communication

Different communication patterns

of parallelism strategies

B GE-Allreduce
B FB-Allgather
B EFB-Layer

n

Iteration time (s)_
|

= n
]
[CIRSSSSNN]

OFB-Allreduce
OFB-Halo

Number of GPUs

Optimizing message passing
algorithms for Deep Learning [1,2]

64

i d|f|c|p|ds

Network congestion of inter-rack

Communication time (s)

New network architecture that
helps to reduce congestion [3]
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nks is the bottle-neck

— Model Emp. (average)
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Iteration

-~

I/0 and stagging overhead become
non-trivial for model parallelisms

Staging Overhead (s)

0-(VGGle, d, 32) @ (ResNet50, d, 64)

@—(ResNet50, £, 64) O=(ResNet50, df, 64)

O—(ResNet50, ds, 256) —#=(ResNet152, d, 64)
=o=(ResNetl52, df, 64) :-O--(ResNetl52, f, 64)
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Number of GPUs

New I/O method:

Decentralized storing dataset

[2]1 N. T. Truong, M. Wahib, and R. Takano, "Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", in Concurrency and Computation

Practice and Experience, Special Issue on Parallel and Distributed Computing and Networking (CCPE)

[3IN.T. Truong, “Topology-aware Sparse Allreduce for Large-scale Deep Learning”, 38th IEEE International Performance Computing and Communications

Conference (IPCCC), Oct 2019

[4] N.T. Truong, et. al. “An Algorithm and System Co-design for Large-Scale Training of Distributed Deep Learning”, submitted to IEEE-CCGRID 2021



Limits/Bottlenecks of Computation

EForward OBackward OWeight update
16
13.4% 14

(o]
<

» Weight update

* Weight update forms a significant
portion of compute time

~
<
1

@)}
<
1

12 A

. 10 A 11.4%
39.0% g | 134%

i
<
1

=
(=1
1

57.8%

Time per epoch (1000s)

« Workload balancing o

* Pipeline can outperform data parallelism MegtronIM | ResNe0  VGGIS
because of P2P rather than collective. (4GPUS) (IGPU)  (1GPU)

» To achieve this, all stages must balance

0,
31.6% 30 8%

— D W
S o o ©
L L L

6
4 [55.0%
2
0

500

B Implementation Overhead
400 - B Other layers

E Conv layer

« Computation redundancy
» Mostly caused by frameworks

Computation time/iter (ms)

200

* Convolutional layer doesn’t scale as 00

expected o
« Computation overhead in split/concat I 2 4 3 16 32 6

Number of GPUs
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Memory Capacity Limits/Bottleneck

« Memory-bound

1
! Sensitive to number of optimizer’s slot variables |
1 (moving average, momentum, etc.) !

* Redundancy I Memory Fonrd | Bacart | Aece | g
 Activations are distributed but |
: | I
weights are not =
* Memory Manager
« Kernels waiting for memory leads |« & & & & & &F

25 8 N %

to performance degradation ';7 | = 0
(Cosmoflow — data+spatial) = ] N
£ 15 -
0.5 4 T — S ] ]
0_ _— I I — I

8 16 32 64 | 128 | 256 | 512

. ParaDL Computation
ParaDL_Communication

|:| Measured _Computation

|:| Measured Communication
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Stack for Distributed DNN Training

Research Interest

Applications (e.g., DNN model)

v

Frameworks (e.g., TensorFlow)

v

Parallel Computing

1
A 4

Communication
(e.g., MPI)

Supercomputer/Cluster

Question: Design high-performance optimization/ method
Goal: 2) 3
Topics: Pruning model

Question: What is the best parallelization strategy?
Goal:(1)(2)(3
Topics: Fine-grained model parallelism (GNN, Trans.)

Question: How to reduce the communication time?
Goal: 2 )3
Topics: Data compression

Question: How do the network architectures effect the per.
Goal: 2
Topics: FPGA network / unidirectional network
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Team Introduction

We do middleware research for edge-to-cloud services and infrastructure (DigiARC calls
as Continuum Computing core), specially we fucus on

@ Acceleration technologies at edge, for advanced and high-performance CC-applications

(@ Cloud technologies, which can provide huge Al computing and data processing powers with
end services, through tighter integration of edge infrastructure

and contribute to the realization of various digital services considered in Society 5.0.

______________________________________________________________________________________________

.

Al-HPC converged
cloud

* Reduction & integration
* Discovery

I
I
|
' * Acceleration
1
i
I
I

| - r ] o
H X Tighter connecticuln
Data # _ ﬁ.

Edge servers P

TERER S~ Integration for Innovation 3 BT REISEE ) R S
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Research Topics (add or remove?)

Data management and use in CC

— Offloading and data reduction at edge for scalability and energy saving, data pipeline optimization

— DataOps automation, balanced with effective human interaction

— Data traceability in sharing and integration

Management of CC-application services

—1 — Develop and build methods of high-performance and robust CC-applications for geo-distributed,
|_¢_| unstable and heterogeneous environments
o O O — Zero-touch service deployment, dynamic QoS control, offloading decision, mobility support

— Low-latency service-to-service interaction, autonomous service orchestration

High performance cloud technologies tightly connecting with edge
f@ — Large-scale computing with accelerators
— High performance Al, Al resource hub

— Low-latency and scalable connection services with edge, efficient resource management

TERER S~ Integration for Innovation 5 BT REISEE ) R S
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Large-scale training, e.g., 100-1000GPUs is challenging
Inference on HPC system
New problems when training with different (Dataset, DL

Model and computer System)
*  Weight update

« 1/0O Stagging

*  Network congestion

The rise of hybrid parallelism (data + model parallelism)



