

Unsupervised Domain Adaptation for Semantic Segmentation

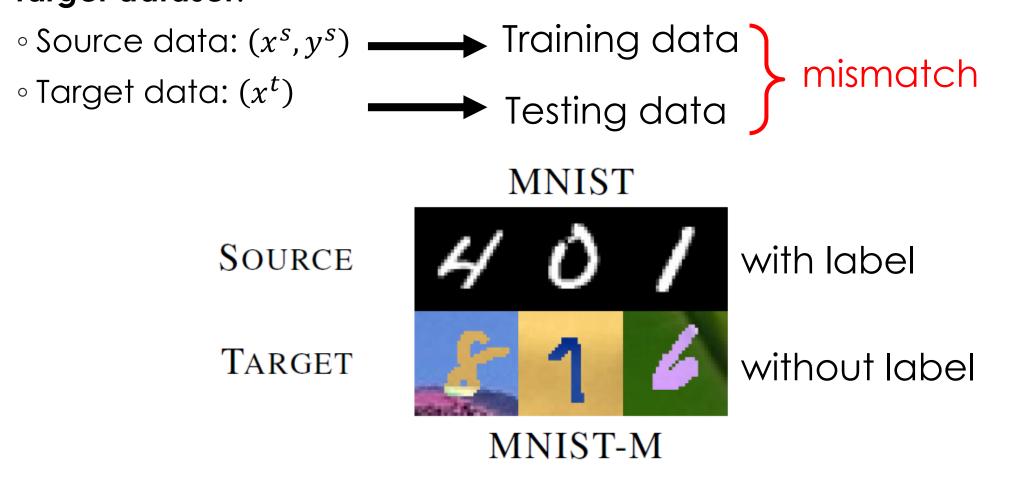
Dinh Viet Sang, Nguyen Thi Oanh, Muriel Visani, Kieu Dang Nam, Nguyen Viet Manh, Nguyen Minh Tu **Computer Vision Lab, BKAI**

Contents

Intro to unsupervised domain adaptation

- Project goal
- Distribution alignment and our proposed G2L method
- Experiments
- Conclusions and future works

Unsupervised domain adaptation (UDA) UDA: transfer knowledge from a labeled source dataset to an unlabeled target dataset.

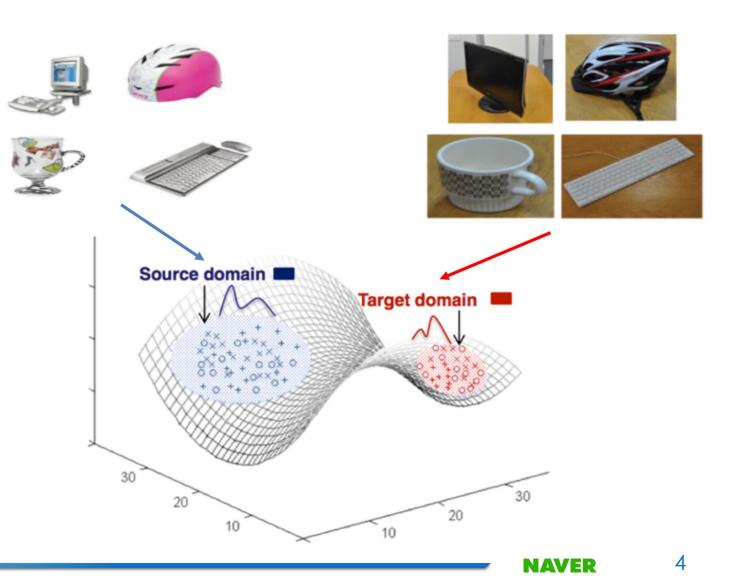


Domain shift

Performance
degradation on the
target domain

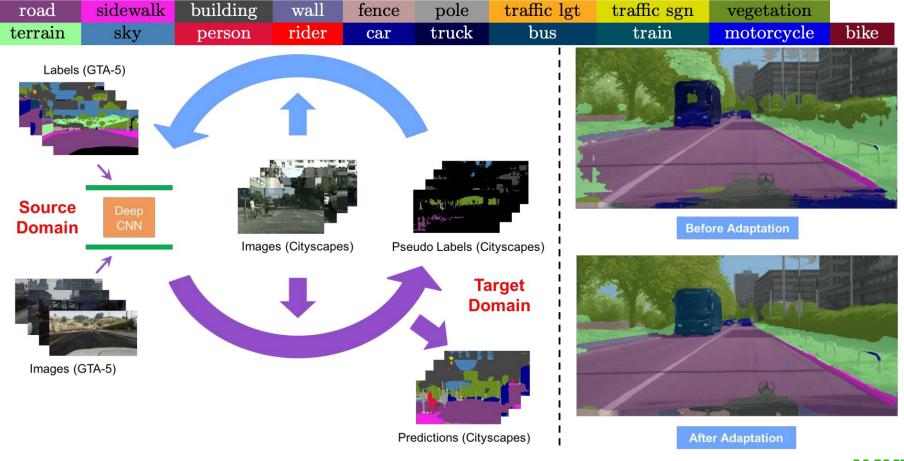
• Domain shift:

Discrepancy between the feature distributions of the two domains



Project goal

Scene Understanding for Autonomous Driving

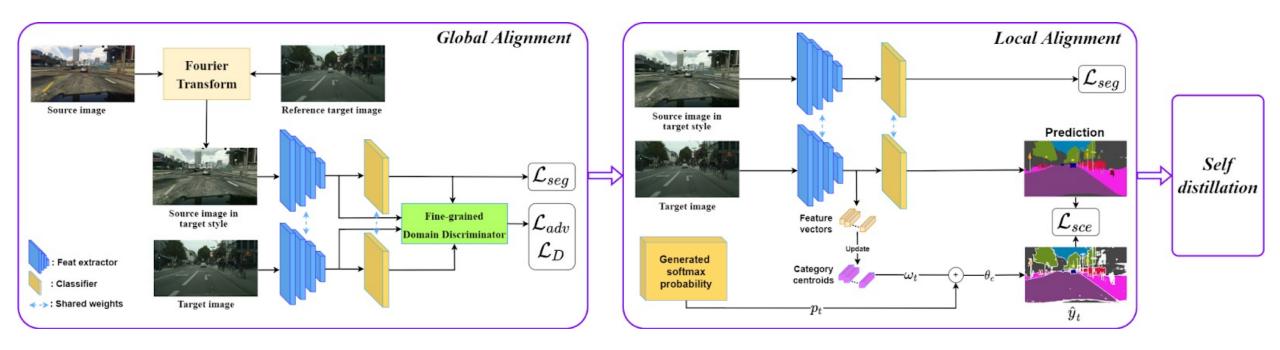


🚺 SOICT BKAI

Distribution alignment

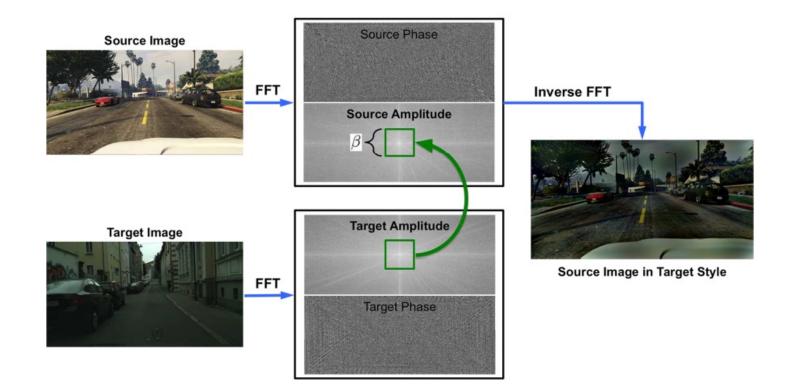
Global alignment: photometric or feature-level

- Local alignment: class-based
- Our G2L method: leverages both global and local alignments



Photometric alignment

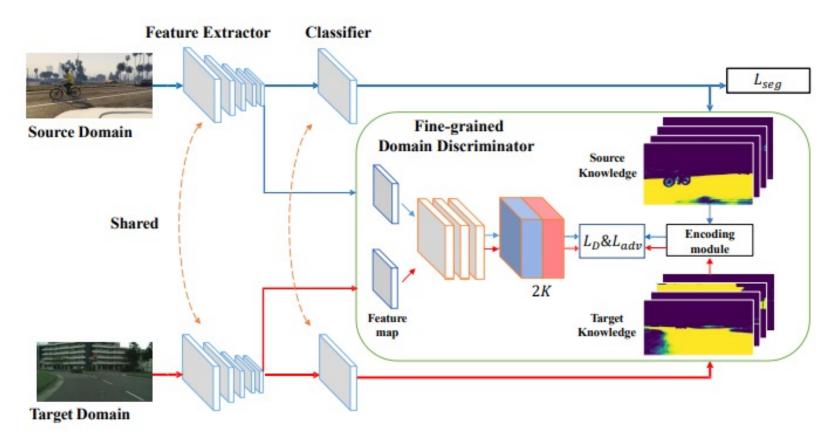
• Style transfer: <u>CyCADA</u>, <u>BLD</u>, <u>DCAN</u>, <u>SA-I2I</u>, <u>FDA</u>, ...



FDA: Fourier Domain Adaptation for Semantic Segmentation

Feature alignment

Fine-grained adversarial learning



Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation

NAVER

Self-distillation with local alignment

- Self-distillation: the network teaches itself using generated pseudo labels
- Issue: Pseudo labels are often noisy

Local alignment: class-wise information based pseudo-label denoising

○ Source domain, class A ○ Source domain, class B + Pseudo label of class A

🔘 Target domain, class A 🛛 🔘 Target domain, class B – Pseudo label of class B

Prototype of class A A Prototype of class B Decision boundary

Experiments

Table 1. Experimental results for GTA5 \rightarrow Cityscapes adaptation. The numbers show the per-class Intersection over Union (IoU) for all of the 19 categories in Cityscapes. mIoU denotes the averaged scores over 19 categories.

Method	road	SW	build	wall	fen	pole	light	sign	veg	terr	sky	per	rider	car	truck	bus	train	moto	bike	mIoU
FADA [17]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2
CAG [24]	90.4	51.6	83.8	34.2	27.8	38.4	25.3	48.4	85.4	38.2	78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2
FDA [22]	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.5
IAST [12]	93.8	57.8	85.1	39.5	26.7	26.2	43.1	34.7	84.9	32.9	88.0	62.6	29.0	87.3	39.2	49.6	23.2	34.7	39.6	51.5
DACS [15]	89.9	39.7	87.9	39.7	39.5	38.5	46.4	52.8	88.0	44.0	88.8	67.2	35.8	84.5	45.7	50.2	0.0	27.3	34.0	52.1
SAC [1]	90.4	53.9	86.6	42.4	27.3	45.1	48.5	42.7	87.4	40.1	86.1	67.5	29.7	88.5	49.1	54.6	9.8	26.6	45.3	53.8
DSP [5]	92.4	48.0	87.4	33.4	35.1	36.4	41.6	46.0	87.7	43.2	89.8	66.6	32.1	89.9	57.0	56.1	0.0	44.1	57.8	55.0
Coarse-to-Fine [11]	92.5	58.3	86.5	27.4	28.8	38.1	46.7	42.5	85.4	38.4	91.8	66.4	37.0	87.8	40.7	52.4	44.6	41.7	59.0	56.1
ProDA [23]	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
ProDA [23]*	91.5	48.8	85.3	43.0	37.7	45.7	54.8	54.6	89.2	49.8	80.2	69.9	18.0	87.5	29.8	49.8	0.3	42.6	52.2	54.3
ProDA [23]**	84.0	57.3	74.2	43.8	46.0	43.6	55.7	52.9	88.9	49.6	78.8	73.0	41.8	88.8	45.9	65.8	0.0	47.4	53.0	57.4
Ours G2L	95.8	68.8	88.0	46,5	37.5	50.3	58.4	58.1	89.5	51.5	83.1	69.0	33.6	89.6	41.3	59.4	36.9	46.9	29.9	59.7

Backbone: ResNet-101

*: Results reproduced by us with the similar training config as our G2L method.

**: Results reproduced by us with the similar training config as our G2L method, using the pre-trained warm-up model, which is published on the page of ProDA.

Experiments

Table 2. Experimental results for Synthia \rightarrow Cityscapes adaptation. The numbers show the per-class Intersection over Union (IoU) of the 16 and 13 categories in Cityscapes. mIoU, and mIoU* denote the averaged scores over 16 and 13 categories respectively.

Method	road	SW	build	wall	fence	pole	light	sign	veg	sky	per	rider	car	bus	moto	bike	mIoU	mIoU*
FADA [17]	84.5	40.1	83.1	4.8	0.0	34.3	20.1	27.2	84.8	84.0	53.5	22.6	85.4	43.7	26.8	27.8	45.2	52.5
CAG (16 classes) [24]	84.7	40.8	81.7	7.8	0.0	35.1	13.3	22.7	84.5	77.6	64.2	27.8	80.9	19.7	22.7	48.3	44.5	_
CAG (13 classes) [24]	84.8	41.7	85.5				13.7	23.0	86.5	78.1	66.3	28.1	81.8	21.8	22.9	49.0	_	52.6
FDA [22]	79.3	35.0	73.2				19.9	24.0	61.7	82.6	61.4	31.1	83.9	40.8	38.4	51.1	_	52.5
IAST [12]	81.9	41.5	83.3	17.7	4.6	32.3	30.9	28.8	83.4	85.0	65.5	30.8	86.5	38.2	33.1	52.7	49.8	57.0
DACS [15]	80.6	25.1	81.9	21.5	2.9	37.2	22.7	24.0	83.7	90.8	67.6	38.3	82.9	38.9	28.5	47.6	48.3	54.8
SAC [1]	89.3	47.2	85.5	26.5	1.3	43.0	45.5	32.0	87.1	89.3	63.6	25.4	86.9	35.6	30.4	53.0	52.6	59.3
DSP [5]	86.4	42.0	82.0	2.1	1.8	34.0	31.6	33.2	87.2	88.5	64.1	31.9	83.8	65.4	28.8	54.0	51.0	59.9
Coarse-to-Fine [11]	75.7	30.0	81.9	11.5	2.5	35.3	18.0	32.7	86.2	90.1	65.1	33.2	83.3	36.5	35.3	54.3	48.2	55.5
ProDA [23]	87.8	45.7	84.6	37.1	0.6	44.0	54.6	37.0	88.1	84.4	74.2	24.3	88.2	51.1	40.5	45.6	55.5	62.0
Ours G2L	87.8	45.1	85.1	25.2	1.3	46.9	53.3	46.4	88.1	86.0	72.0	40.6	91.4	62.9	35.6	41.1	56.8	64.4

Backbone: ResNet-101

Experiments

Conclusion and future works

Main achivements

- Propose a new effective UDA method that leverages both glocal and local alignments
- Achieve a significant improvement on popular benchmarks
- Other achievements
 - Generate a big synthesized dataset for scene understanding car simulator
 - \circ Evaluate the model on the NAVER LABS dataset

Future works

- Online domain adaptation
- Video-based/depth-guided domain adaptation

