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Motivation 
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• Hanoi's air quality has reached an emergency level
• We need to track the air quality indicators to help

• civilians have a plan for protecting their health
• experts investigate the causes and find solutions
• policymakers come up with strategies in time

Traditional monitoring stations:
• Fixed locations 
• High cost  

à limited number: only 50 
stations in Hanoi

• Data is not public 



Goals and Solutions 
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Fine-grained 
Air quality map Low cost

1. Use low cost sensors 

How many sensors do we need? 
à thousands à still expensive 

2. Leverage the mobility of vehicles 

Put the sensors on vehicle à we can 
monitor a large area with only one 
device 

4. Utilize AI to enhance the accuracy 

Sensory data is not correct à use AI 
to calib 

3. Utilize AI to fill in unmonitored regions 

Even with mobile sensors, we 
cannot cover all regions à use AI to 
interpolate 
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Fi-Mi Architecture
◦ Sensing tier 
◦ Collects real-time air quality data

◦ Carried by air monitoring devices deployed 
on vehicular devices such as buses 

◦ Communication tier 
◦ Transfers data between the monitoring 

devices and the servers

◦ Application tier 
◦ Calibrates and Stores the sensory data 

◦ Predicts air quality in un-monitored regions 

◦ Forecasts the future trend of the air quality

◦ Provides information to users through 
smartphone application and a web portal
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Hardware implementation 
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Block function of Fi-Mi device

◦ MCU STM32F103C6T8
◦ Collect sensor data
◦ Send data with Wi-Fi or LTE
◦ External memory and power management



Experiments 
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Average 
latency(s) Delivery ratio 

Sensory data reading 0.26 

Wi-Fi Transmission 0.32 97%

4G (LTE)Transmission 0.99 100%

Communication 
channel

Sent 
packets 

Received 
packets

Delivery 
ratio

Wi-Fi 1200 1198 99.8%

4G (LTE) 1200 1200 100%

Static experiment

Packet loss in trial

Fi-Mi monitoring device mounted on car

PM2.5 data reported by Fi-Mi device



Deployment on buses 
◦We already deployed two Fi-Mi devices on Hanoi buses from Apirl 
◦We will finish deploying 25 devices in July 
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AI core 
◦ Data calibration 
◦ Air quality forecasting 
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Data calibration 
◦Reference device: GRIMM 107
◦Observation
◦ The gaps between reference device 

and Fi-Mi devices are large 
◦ Fi-Mi devices show different temporal 

patterns and covariate shifts
◦Challenges 
◦ How to efficiently calibrate Fi-Mi 

devices? 
◦ Can we use a single model to calibrate 

all devices at the same time?
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Reference device 

Fi-Mi devices

GRIMM 107



Single device calibration
◦Problem formulation 
◦Given
◦ Data collected from a Fi-mi device
◦ 𝒙! = 𝑥! "#$%, 𝑥! "#$&, … , 𝑥!

◦ Data collected from the reference device at the same location
◦ 𝒚!∗ = 𝑦! "($%∗ , 𝑦! "($&∗ , … , 𝑦!∗

◦Objective 
◦ Calibrating the data of Fi-mi device to make it as close as possible to the reference 

data
◦ 𝒚! = 𝑦! "($%, 𝑦! "($&, … , 𝑦! = 𝑓 𝒙! = 𝑥! "#$%, 𝑥! "#$&, … , 𝑥!
◦ Minimize: 𝒚!∗ − 𝒚!
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Single device calibration
◦ Common approach
◦ Considering the calibration as a regression task 
◦ Using some common model architectures and training by MSE loss
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Fi-mi data
𝒙! = 𝑥! "#$%, 𝑥! "#$&, … , 𝑥!

Reference data
𝒚!∗ = 𝑦! "($%∗ , 𝑦! "($&∗ , … , 𝑦!∗

Regression
model

Minimize 
the gap

Calibrated data
𝒚! = 𝑦! "($%, 𝑦! "($&, … , 𝑦!



False

Single device calibration
◦Generative Adversarial Learning approach 

Generator

Fi-mi data
𝒙! = 𝑥! "#$%, 𝑥! "#$&, … , 𝑥!

Reference data
𝒚!∗ = 𝑦! "($%∗ , 𝑦! "($&∗ , … , 𝑦!∗

!!

Discriminator True

Calibrated data
𝒚! = 𝑦! "($%, 𝑦! "($&… , 𝑦!

Gaussian noise 
𝒛𝒊~𝒩(0,1)

𝐺(𝒛"|𝒙") Mixed data



Single device calibration
◦Generative Adversarial Learning approach 

Fi-mi data

Generator

𝒙! = 𝑥! "#$%, 𝑥! "#$&, … , 𝑥!

Reference data
𝒚!∗ = 𝑦! "($%∗ , 𝑦! "($&∗ , … , 𝑦!∗

!!

Discriminator

False

True

Gaussian noise 
𝒛𝒊~𝒩(0,1)

𝐺(𝒛"|𝒙")
	"!

!"#$%&$'(%)$"*

||

	"!"# 	"!"$%#

+,-.'/0")1 +,-.'/0")1

LSTM Block

Calibrated data
𝒚! = 𝑦! "($%, 𝑦! "($&… , 𝑦!



Single device calibration
◦Generative Adversarial Learning approach: Preliminaries experiment 

results 
◦ Reference device: GRIMM 107 (operated and managed by INEST, HUST) 
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RMSE MAE MAPE CRPS

Our generator 
with MSE loss 6.591 2.758 9.085 2.758

XGBoost 29.899 20.986 115.222 20.986

GAN (our) 5.551 2.449 9.208 2.212

RMSE MAE MAPE CRPS

Our generator 
with MSE loss 1.198 0.862 3.466 0.862

XGBoost 2.454 2.247 15.563 2.454

GAN (our) 1.110 0.849 2.937 0.633



Single device calibration
◦ Enhancing the calibration accuracy
◦ changes the loss function 
◦ uses decomposition method (SSA) to elliminate the noise and outlier 
◦ uses attention mechanism to select the most useful components
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RMSE MAE MAPE CRPS
ForGAN 3.36 2.27 5.36 2.24

G only 3.76 2.75 6.42 2.75

G only + SSA Attention 3.29 2.1925 5.22 2.19

ForGAN + SSA Attention 
(Our proposal) 3.20 2.190 5.26 2.14

XGBoost 16.86 15.48 35.28 15.48

Linear Regression 17.23 16.006 36.70 16.006

Raw Data 20.46 19.3996 45.096 19.3996 XG Boost Proposal

groundtruth calibrated data



Multi-devices calibration
◦ Can we calibrate multiple devices at the same time? 
◦ Multi-task learning approach 

◦ Challenges 
◦ Capturing common features of all devices 
◦ Identifying unique features of each device
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Multi-devices calibration
◦ Can we calibrate multiple devices at the same time? 
◦ Multi-task learning approach 

◦ Challenges 
◦ Capturing common features of all devices 
◦ Shared LSTM layer 
◦ captures common features of the devices 

◦ Inter-device Attention block
◦ learns relationship between the devices 

◦ Identifying unique features of each device
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Multi-devices calibration
◦ Can we calibrate multiple devices at the same time? 
◦ Multi-task learning approach 

◦ Challenges 
◦ Capturing common features of all devices 
◦ Identifying unique features of each device
◦ Identity module 
◦ identifies the devices 

◦ Intra-device Attention block 
◦ learns characteristic inside every device 

23



!
"

!
"

!
"

!!

!"

||

!#

!
" 	σ.

#$%&'()&*+,&-.%%&$%+/$
"#$%&'%(!&)%*+&,

	∑ ||

~!"

×#0 1

#0 "

#0 #

!!

!#

!"

-).*&,

/&0,

!"#$%#&

!

123'&)-4156-437&'

8

8

8

"! "# ""#! ## #"

$$

!"#$
%&&"'&()'*!+,

-#).%#/
0&&"'&()'

%$

|| !
"

1

1

1

#$%'3()&*+,&-.%%&$%+/$

"39+:'3%&)-)3%3-
/;-)&*+,&	"

Multi-devices calibration
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Generator module 

!"#$%&%'()*"+,#

Shared LSTM Layer
Intra-device Attention

Identity Module
Inter-device Attention Context features

Calibrated data of 
device j



!
"

!
"

!
"

!!

!"

||

!#

!
" 	σ.

#$%&'()&*+,&-.%%&$%+/$
"#$%&'%(!&)%*+&,

	∑ ||

~!"

×#0 1

#0 "

#0 #

!!

!#

!"

-).*&,

/&0,

!"#$%#&

!

123'&)-4156-437&'

8

8

8

"! "# ""#! ## #"

$$

!"#$
%&&"'&()'*!+,

-#).%#/
0&&"'&()'

%$

|| !
"

1

1

1

#$%'3()&*+,&-.%%&$%+/$

"39+:'3%&)-)3%3-
/;-)&*+,&	"
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!"#"$%&'$()'*+,"(

LSTM layer is shared among all 
devices 
• learns common features of all 

devices
• leverages information from other 

devices to enhance information 
extracted for one device

Shared LSTM Layer
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Multi-devices calibration
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!"#$%&%'()*"+,#

• Identity module helps to identify the device
• For each device, the inter-device attention block 

weights the impacts of other devices 
Representing information of 
- the device of interest 
- the other devices that 

relate to the device of 
interest

Identity Module
Inter-device Attention Context features
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• Self-attention block learns the relationship 
among the time steps 

• The Global attention weigting importance 
of every time steps

Intra-device Attention

Calibrated data of 
device j



Multi-devices calibration
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Model MSE MAE MAPE

CRNN [1] 53.71 5.2 15.79

AECRNN [1] 63.33 5.47 16.62

MTLGRU [2] 52.07 4.49 13.62

MSJF [3] 48.29 5.33 16.18

SPA [3] 38.43 5.09 15.45

FimiCalib-1model 30.51 4.47 13.58

FimiCalib-MSE (Our) 25.38 4.16 12.92

FimiCalib-cGAN (Our) 20.17 3.47 10.59

[1] Cirstea, Razvan-Gabriel, et al. “Correlated time series forecasting using multi-task deep neural networks.” Proceedings of the 27th ACM 
international conference on information and knowledge management. 2018.
[2] Zhang, Kunpeng, et al. “A multitask learning model for traffic flow and speed forecasting.” IEEE Access 8 (2020): 80707-80715.
[3] Ma, Tao, and Ying Tan. “Multiple stock time series jointly forecasting with multi-task learning.” 2020 International Joint Conference on 
Neural Networks (IJCNN). IEEE, 2020.

Reduces MAPE by 22% 
compared to the best 
baseline



Multi-devices calibration
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Model Parameters Inference time (s)
(5 devices)

CRNN [1] 2072519 0.0032

AECRNN [1] 3920204 0.007

MTLGRU [2] 1010708 0.0019

MSJF [3] 516116 0.0007

SPA [3] 565268 0.0008

FimiCalib-Nmodel 3518611 0.0024

FimiCalib-cGAN (Our) 1820835 0.0022

[1] Cirstea, Razvan-Gabriel, et al. “Correlated time series forecasting using multi-task deep neural networks.” Proceedings of the 27th ACM 
international conference on information and knowledge management. 2018.
[2] Zhang, Kunpeng, et al. “A multitask learning model for traffic flow and speed forecasting.” IEEE Access 8 (2020): 80707-80715.
[3] Ma, Tao, and Ying Tan. “Multiple stock time series jointly forecasting with multi-task learning.” 2020 International Joint Conference on 
Neural Networks (IJCNN). IEEE, 2020.

Competitive parameter 
number and inference 
time



Multi-devices calibration
◦ Visualization of calibration results 
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Air quality interpolation
◦ Problem Formulation 
◦ Given: Data collected from 𝑛 monitoring stations

◦ Air quality indicators: 𝑿#, … , 𝑿$
◦ Meteorology data: 𝑴#, … ,𝑴$

◦ Objective: air quality indicators at an arbitrary 
location 𝑆) at the current time 𝑇
◦ Currently, we focus on forecasting of PM2.5 as it is the 

most important air quality indicator 

◦ Assumption: the meteorology data at 𝑆/ is 
available 

31

Data collected from i-th station, at time 
step 𝑡
𝑋!): Air quality indicators 
𝑀!
): Meteorology data 

𝑿𝒊𝑻 ?



Design principle
◦ Spatio-temporal dependency
◦ Temporal dependency: current air quality value is often relevant to its historical data
◦ Spatial dependency: air quality at a location often relates to that at neighboring 

locations

◦Multi-modal information 
◦ Air quality data consists multivariate features (different air quality indicators, 

meteorology features)
◦ Some of features might have more impact to PM2.5 than the others

◦ Interpolation capability
◦ Lack of historical air quality data at the targeted location 
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Design principle
◦ Spatio-temporal dependency
◦ Temporal dependency: current air quality value is often relevant to its historical data
◦ Spatial dependency: air quality at a location often relates to that at neighboring 

locations

◦Multi-modal information 
◦ Air quality data consists multivariate features (different air quality indicators, 

meteorology features)
◦ Some of features might have more impact to PM2.5 than the others
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Design an architecture that 
capable of capturing both these 
information at the same time



Design principle
◦ Spatio-temporal dependency
◦ Temporal dependency: current air quality value is often relevant to its historical data
◦ Spatial dependency: air quality at a location often relates to that at neighbouring

locations

◦Multi-modal information 
◦ Air quality data consists multivariate features (different air quality indicators, 

meteorology features)
◦ Some of features might have more impact to PM2.5 than the others

◦ Interpolation capability
◦ Lack of historical air quality data at the targeted location 
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Effectively integrate the 
features into the model to boost 
the accuracy of PM2.5 
prediction 



Design principle
◦ Spatio-temporal dependency
◦ Temporal dependency: current air quality value is often relevant to its historical data
◦ Spatial dependency: air quality at a location often relates to that at neighboring 

locations

◦Multi-modal information 
◦ Air quality data consists multivariate features (different air quality indicators, 

meteorology features)
◦ Some of features might have more impact to PM2.5 than the others

◦ Interpolation capability
◦ Lack of historical air quality data at the targeted location 
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modeling the correlation between 
the locations based on available 
stations and generalize to arbitrage 
places



Our solution (1) 
◦Modelling the spatio-temporal dependency
◦ Temporal graph convolution network (T-GCN) = Gated Recurrent Network (GRU) + 

Graph Convolutional Network (GCN)
◦ GRU: strong capability in handling sequence data 
◦ GCN: effectively capture the relationship between nodes in spatial domain using node 

feature
◦ Corrupt function utilizing both the global view corruption and feature level corruption.
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Spatio-temporal graph representation learning

37

Represents information of 
all monitoring stations at a 
time step 

Nodes = {monitoring 
stations}
Atributes = {Aiquality 
indicators, meteorology}
Edges’ weight = {inverse 
of distances}



Spatio-temporal graph representation learning
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Models the spatial 
relationship between the 
monitoring stations 

Models the temporal 
correlation of the data 
accross 𝑇 timesteps 

Each vector captures information of a monitoring station 
and its relationship with other stations

Enhanced 
embedding vectors



Our solution (2) 
◦ Handling multi-modal information 
◦ Discuss with experts to find features which may affect PM2.5 the most 
◦ Wind speed, Win direction, Temperature, Pressure, Precipitation, 

◦ Propose 
◦ A data preprocessing process to extract useful information related to wind 
◦ analyzes the wind direction from the neighboring stations to the targeted location
◦ calculates the wind speed at the targeted location based 

◦ A feature-aware attention mechanism 
◦ scores the importance of each feature 
◦ highlights the relevant features to PM2.5
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Handling multi-modal information 

40

Wind speed, Win direction, 
Temperature, Pressure 

Roughly interpolate air quality 
at the targeted location by 
using information of the 
monitoring stations

Concatenate 
meteorology data and 
the interpolated data  

Use attention mechanism 
to highlight most relevant 
features 



Enhancing interpolation capability
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Experiment results 
◦ Datasets 
◦ Beijing Dataset
◦ collects the air quality and meteorological information of 35 stations across Beijing 
◦ covers an area of 16,441 𝑘𝑚%

◦ UK Dataset
◦ collects the air quality and meteorological information of 141 stations in UK
◦ covers an area of 242,295 𝑘𝑚%

◦ Research questions 
◦ Does our proposed model outperform the baseline methods?
◦ How important is each design choice affect our model?
◦ How does the strategy of selecting training station affect the model result?
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Comparison with SOTA
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Our proposed 
method achieves 
the best 
performance

[BiLSTM-IDW] J. MA, Y. Ding, V. Gan, C. Lin, and Z. WAN, “Spatiotemporal prediction of pm2.5 concentrations at different time granularities using 
IDW-BLSTM,” IEEE Access, vol. PP, pp. 1–1, 08 2019.
[KIDW-TCGRU] C. Guo, G. Liu, L. Lyu, and C.-H. Chen, “An unsupervised
pm2.5 estimation method with different spatio-temporal resolutions based on KIDW-TCGRU,” IEEE Access, vol. 8, pp. 190 263– 850
190 276, 2020.



Ablation study 
◦ GEDE-1: remove the local attention
◦ GEDE-2: remove the global attention
◦ GEDE-3: remove both two attention mechanisms
◦ GEDE-4: remove the GCN
◦ GEDE-5: remove the GRU units 
◦ GEDE-6: remove the the graph module 
◦ GEDE-7: remove the meteorology data of the targeted location 
◦ GEDE-8: remove the node-feature corruption from the corrupting function
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Impacts of training station selection strategy
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Selection the training stations by correlation achieves the best performance 
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Software implementation 
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A Realtime air quality monitoring and forecasting 
webpage and smartphone app  



Software implementation 
◦ Demo 
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Conclusion and Future work 
◦What we have done 
◦ Proposed a mobile air quality monitoring system 
◦ Implemented 30 devices 
◦ Finished the testing phase, going to the real deployment 
◦ Implemented the software system 
◦ Proposed AI models for calibration and forecasting 

◦ Future work
◦ Real deployment 
◦ Test the proposed method on the real system 
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