

Nguyen Phi Le, Huynh Thi Thanh Binh, Do Phan Thuan, Le Minh Thuy (HUST) Kien Nguyen (Chiba University), Nguyen Cam Ly (Toshiba Corp)

Agenda

- Overview of the project
- Fi-Mi architecture
- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

Agenda

Overview of the project

- Fi-Mi architecture
- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

FI-U

3

Motivation

Traditional monitoring stations:

- Fixed locations
- High cost
 - → limited number: only 50 stations in Hanoi
- Data is not public

- Hanoi's air quality has reached an emergency level
- We need to track the air quality indicators to help
 - civilians have a plan for protecting their health
 - experts investigate the causes and find solutions
 - policymakers come up with strategies in time

Goals and Solutions

Fine-grained Air quality map

Low cost

3. Utilize AI to fill in unmonitored regions

Even with mobile sensors, we cannot cover all regions \rightarrow use AI to interpolate

4. Utilize AI to enhance the accuracy

Sensory data is not correct \rightarrow use AI to calib

1. Use low cost sensors

How many sensors do we need? → thousands → still expensive

2. Leverage the mobility of vehicles

Put the sensors on vehicle \rightarrow we can monitor a large area with only one device

Agenda

• Overview of the project

• Fi-Mi architecture

- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

Fi-Mi Architecture

\circ Sensing tier

- Collects real-time air quality data
- Carried by air monitoring devices deployed on vehicular devices such as buses

Communication tier

• **Transfers data** between the monitoring devices and the servers

• Application tier

- Calibrates and Stores the sensory data
- Predicts air quality in un-monitored regions
- Forecasts the future trend of the air quality
- Provides information to users through
 smartphone application and a web portal

FĂ-I

Agenda

- Overview of the project
- Fi-Mi architecture
- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

Hardware implementation

Block function of Fi-Mi device

- MCU STM32F103C6T8
- Collect sensor data
- $\circ\,$ Send data with Wi-Fi or LTE
- External memory and power management

Experiments

Static experiment

	Average latency(s)	Delivery ratio
Sensory data reading	0.26	
Wi-Fi Transmission	0.32	97%
4G (LTE)Transmission	0.99	100%

Packet loss in trial

Communication channel	Sent packets	Received packets	Delivery ratio
Wi-Fi	1200	1198	99.8%
4G (LTE)	1200	1200	100%

Fi-Mi monitoring device mounted on car

PM2.5 data reported by Fi-Mi device

Deployment on buses

We already deployed two Fi-Mi devices on Hanoi buses from Apirl
 We will finish deploying 25 devices in July

FI-M

Agenda

- Overview of the project
- Fi-Mi architecture
- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

FĨ-M

Al core

- Data calibration
- Air quality forecasting

Data calibration

- Reference device: GRIMM 107
- Observation
 - The gaps between reference device and Fi-Mi devices are large
 - Fi-Mi devices show different temporal patterns and covariate shifts
- Challenges
 - How to efficiently calibrate Fi-Mi devices?
 - Can we use a single model to calibrate all devices at the same time?

GRIMM 107

Problem formulation

• Given

Data collected from a Fi-mi device

 $\circ \boldsymbol{x}_i = (x_{i-k+1}, x_{i-k+2}, \dots, x_i)$

 \circ Data collected from the reference device at the same location

•
$$\mathbf{y}_{i}^{*} = (y_{i-q+1}^{*}, y_{i-q+2}^{*}, \dots, y_{i}^{*})$$

Objective

 Calibrating the data of Fi-mi device to make it as close as possible to the reference data

$$\circ \mathbf{y}_{i} = (y_{i-q+1}, y_{i-q+2}, \dots, y_{i}) = f(\mathbf{x}_{i} = (x_{i-k+1}, x_{i-k+2}, \dots, x_{i}))$$

• Minimize:
$$|y_i^* - y_i|$$

Common approach

• Considering the calibration as a regression task

• Using some common model architectures and training by MSE loss

Generative Adversarial Learning approach

Generative Adversarial Learning approach

FI-

- Generative Adversarial Learning approach: Preliminaries experiment results
 - Reference device: GRIMM 107 (operated and managed by INEST, HUST)

	RMSE	MAE	MAPE	CRPS		RMSE	MAE	МАРЕ	CRPS
Our generator with MSE loss	6.591	2.758	9.085	2.758	Our generator with MSE loss	1.198	0.862	3.466	0.862
XGBoost	29.899	20.986	115.222	20.986	XGBoost	2.454	2.247	15.563	2.454
GAN (our)	5.551	2.449	9.208	2.212	GAN (our)	1.110	0.849	2.937	0.633

Enhancing the calibration accuracy

- \circ changes the loss function
- uses decomposition method (SSA) to elliminate the noise and outlier
- uses attention mechanism to select the most useful components

	RMSE	MAE	MAPE	CRPS
ForGAN	3.36	2.27	5.36	2.24
G only	3.76	2.75	6.42	2.75
G only + SSA Attention	3.29	2.1925	5.22	2.19
ForGAN + SSA Attention (Our proposal)	3.20	2.190	5.26	2.14
XGBoost	16.86	15.48	35.28	15.48
Linear Regression	17.23	16.006	36.70	16.006
Raw Data	20.46	19.3996	45.096	19.3996

- Can we calibrate multiple devices at the same time?
 - Multi-task learning approach
- Challenges
 - Capturing common features of all devices
 - Identifying unique features of each device

- Can we calibrate multiple devices at the same time?
 - Multi-task learning approach
- Challenges

Capturing common features of all devices

- Shared LSTM layer
 - $\circ\,$ captures common features of the devices
- Inter-device Attention block
 - $\circ\,$ learns relationship between the devices
- Identifying unique features of each device

- Can we calibrate multiple devices at the same time?
 - Multi-task learning approach
- Challenges
 - Capturing common features of all devices
 - Identifying unique features of each device
 - Identity module
 - \circ identifies the devices
 - Intra-device Attention block
 - learns characteristic inside every device

Shared LSTM Layer

Shared LSTM Layer

LSTM layer is **shared among all** devices

- learns common features of all devices
- leverages information from other devices to enhance information extracted for one device

FI-

25

- Identity module helps to identify the device
- For each device, the inter-device attention block weights the impacts of other devices

FÅ-

Identity Module

- Self-attention block learns the relationship among the time steps
- The Global attention weigting importance of every time steps

Intra-device Attention

FI-I

Model	MSE	MAE	MAPE	
CRNN [1]	53.71	5.2	15.79	
AECRNN [1]	63.33	5.47	16.62	
MTLGRU [2]	52.07	4.49	13.62	Peduces MAPE by 229
MSJF [3]	48.29	5.33	16.18	compared to the bes
SPA [3]	38.43	5.09	15.45	baseline
FimiCalib-1model	30.51	4.47	13.58	
FimiCalib-MSE (Our)	25.38	4.16	12.92	
FimiCalib-cGAN (Our)	20.17	3.47	10.59	

[1] Cirstea, Razvan-Gabriel, et al. "Correlated time series forecasting using multi-task deep neural networks." Proceedings of the 27th ACM international conference on information and knowledge management. 2018.

[2] Zhang, Kunpeng, et al. "A multitask learning model for traffic flow and speed forecasting." IEEE Access 8 (2020): 80707-80715.

[3] Ma, Tao, and Ying Tan. "Multiple stock time series jointly forecasting with multi-task learning." 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020.

Model	Parameters	Inference time (s) (5 devices)	
CRNN [1]	2072519	0.0032	
AECRNN [1]	3920204	0.007	
MTLGRU [2]	1010708	0.0019	Competitive parame
MSJF [3]	516116	0.0007	time
SPA [3]	565268	0.0008	
FimiCalib-Nmodel	3518611	0.0024	
FimiCalib-cGAN (Our)	1820835	0.0022	

[1] Cirstea, Razvan-Gabriel, et al. "Correlated time series forecasting using multi-task deep neural networks." Proceedings of the 27th ACM international conference on information and knowledge management. 2018.

[2] Zhang, Kunpeng, et al. "A multitask learning model for traffic flow and speed forecasting." IEEE Access 8 (2020): 80707-80715.

[3] Ma, Tao, and Ying Tan. "Multiple stock time series jointly forecasting with multi-task learning." 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020.

• Visualization of calibration results

FI-MI

30

Air quality interpolation

Problem Formulation

 \circ **Given:** Data collected from n monitoring stations

- Air quality indicators: X_1, \dots, X_n
- \circ Meteorology data: $\pmb{M}_1, \ldots, \pmb{M}_n$
- **Objective:** air quality indicators at an arbitrary location S_x at the current time T
 - Currently, we focus on forecasting of PM2.5 as it is the most important air quality indicator
- \circ Assumption: the meteorology data at S_x is available

Data collected from i-th station, at time step t X_i^t : Air quality indicators M_i^t : Meteorology data

Spatio-temporal dependency

- Temporal dependency: current air quality value is often relevant to its historical data
- Spatial dependency: air quality at a location often relates to that at neighboring locations
- Multi-modal information
 - Air quality data consists multivariate features (different air quality indicators, meteorology features)
 - Some of features might have more impact to PM2.5 than the others
- Interpolation capability
 - Lack of historical air quality data at the targeted location

Design an architecture that capable of capturing both these information at the same time

- Spatio-temporal dependency
 - Temporal dependency: current air quality value is often relevant to its historical data
 - Spatial dependency: air quality at a location often relates to that at neighboring locations
- Multi-modal information
 - Air quality data consists multivariate features (different air quality indicators, meteorology features)
 - Some of features might have more impact to PM2.5 than the others
- Interpolation capability
 - Lack of historical air quality data at the targeted location

- Spatio-temporal dependency
 - Temporal dependency: current air quality valu
 - Spatial dependency: air quality at a location

Effectively integrate the features into the model to boost the accuracy of PM2.5 prediction

Ita

- Multi-modal information
 - Air quality data consists multivariate features (different air quality indicators, meteorology features)
 - Some of features might have more impact to PM2.5 than the others
- Interpolation capability
 - Lack of historical air quality data at the targeted location

Spatio-temporal dependency

• Temporal dependency: current air quality value is often relevant to its historical data

-----TI

- Spatial dependency: air quality at a location often relates to that at neighboring locations
- Multi-modal information
 - Air quality data consists multivariate features meteorology features)
 - Some of features might have more in
- Interpolation capability
 - Lack of historical air quality data at the targeted location

modeling the correlation between the locations based on available stations and generalize to arbitrage places

Our solution (1)

- Modelling the spatio-temporal dependency
 - Temporal graph convolution network (T-GCN) = Gated Recurrent Network (GRU) + Graph Convolutional Network (GCN)
 - GRU: strong capability in handling sequence data
 - GCN: effectively capture the relationship between nodes in spatial domain using node feature
 - Corrupt function utilizing both the global view corruption and feature level corruption.

Spatio-temporal graph representation learning

FI-N

Spatio-temporal graph representation learning

Our solution (2)

Handling multi-modal information

- Discuss with experts to find features which may affect PM2.5 the most
 - Wind speed, Win direction, Temperature, Pressure, Precipitation,
- Propose
 - A data preprocessing process to extract useful information related to wind
 - $\circ\,$ analyzes the wind direction from the neighboring stations to the targeted location
 - calculates the wind speed at the targeted location based
 - A feature-aware attention mechanism
 - $\circ\,$ scores the importance of each feature
 - $\circ\,$ highlights the relevant features to PM2.5

Handling multi-modal information

Enhancing interpolation capability

FI-MI

4

Experiment results

Datasets

- Beijing Dataset
 - collects the air quality and meteorological information of 35 stations across Beijing
 - \circ covers an area of 16,441 km^2
- UK Dataset
 - collects the air quality and meteorological information of 141 stations in UK
 - $^\circ\,$ covers an area of 242,295 $km^2\,$

Research questions

- Does our proposed model outperform the baseline methods?
- How important is each design choice affect our model?
- How does the strategy of selecting training station affect the model result?

Comparison with SOTA

Dataset	Model	MAE	RMSE	MAPE	R2	
	BiLSTM-IDW	13.25	18.28	0.61	0.85	
Beijing	KIDW-TCGRU	16.28	20.38	0.78	0.76	
	GEDE	10.80	16.7	0.55	0.871	
	IDW	11.62	17.74	0.72	0.86	
	BiLSTM-IDW	2.59	3.6	0.39	0.152	
UK	KIDW-TCGRU	2.85	4.18	0.52	0.31	
	GEDE	2.16	3.19	0.36	0.39	
	IDW	2.45	4.07	0.4	0.18	

Our proposed method achieves the best performance

[BiLSTM-IDW] J. MA, Y. Ding, V. Gan, C. Lin, and Z. WAN, "Spatiotemporal prediction of pm2.5 concentrations at different time granularities using IDW-BLSTM," IEEE Access, vol. PP, pp. 1–1, 08 2019.

[KIDW-TCGRU] C. Guo, G. Liu, L. Lyu, and C.-H. Chen, "An unsupervised

pm2.5 estimation method with different spatio-temporal resolutions based on KIDW-TCGRU," IEEE Access, vol. 8, pp. 190 263–850 190 276, 2020.

Ablation study

- GEDE-1: remove the local attention
- GEDE-2: remove the global attention
- GEDE-3: remove both two attention mechanisms
- GEDE-4: remove the GCN
- GEDE-5: remove the GRU units
- GEDE-6: remove the the graph module
- GEDE-7: remove the meteorology data of the targeted location
- GEDE-8: remove the node-feature corruption from the corrupting function

Dataset	Model	GEDE	GEDE-1	GEDE-2	GEDE-3	GEDE-4	GEDE-5	GEDE-6	GEDE-7	GEDE-8
	MAE	10.21	10.44	10.93	11.24	12.91	13.37	15.22	12.23	13.46
	RMSE	15.22	16.06	17.2	16.85	17.89	18.89	27.6	17.6	25.54
Beijing	MDAPE	0.21	0.21	0.25	0.54	0.31	0.31	0.37	0.28	0.33
	MAPE	0.48	0.48	0.52	0.25	0.71	0.7	1.02	0.6	0.83
	R2	0.89	0.88	0.86	0.86	0.85	0.83	0.82	0.85	0.85
	MAE	2.16	2.27	2.23	2.37	2.51	2.31	2.33	2.36	2.35
	RMSE	3.19	3.37	3.2	3.39	3.65	3.39	3.29	3.52	4.96
UK	MDAPE	0.23	0.24	0.24	0.39	0.28	0.26	0.26	0.24	0.24
	MAPE	0.36	0.39	0.39	0.28	0.48	0.37	0.42	0.39	0.39
	R2	0.39	0.34	0.31	0.32	0.18	0.29	0.272	0.22	0.21

Impacts of training station selection strategy

Dataset	Station selection method	MAE	RMSE	MDAPE	MAPE	R2
	Distance-based method	10.44	16.06	0.21	0.48	0.88
Beijing	Correlation-based method	9.23	14.18	0.2	0.55	0.9
	Random-based method	12.53	17.35	0.32	1.02	0.86
	Distance-based method	2.16	3.19	0.23	0.36	0.39
UK	Correlation-based method	1.78	2.77	0.19	0.31	0.6
	Random-based method	2.2	3.15	0.25	0.35	0.32

Selection the training stations by correlation achieves the best performance

FÅ

Agenda

- Overview of the project
- Fi-Mi architecture
- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

FI-m

Software implementation

I	Hanoi Air Quality Forecast									
l		-	110 Sat 11	Sun 12 Mon 13	Tue 14 Wed 15	Thu 16				
l	Day	Friday 10	Saturday 11	Sunday 12	Monday 13	Tuesday 14	Wednesday 15			
l	Hour Agi	0 3 6 9 12 15 18 21	0 3 6 9 12 15 18 21	0 3 6 9 12 15 18 21	0 3 6 9 12 15 18 21	0 3 6 9 12 15 18 21	0 3 6 9 12 15 18 21 99 122 100 122 121 103 121 91			
l	PM2.5	5 J & J & A J &	25 37 36 37 56 38 37 36	25 37 36 37 36 30 37 36	2 7 4 7 4 4 7 4	35 37 36 37 36 30 37 36	35 37 36 37 36 39 37 38			
l	PM10	3 39 3 39 40 39 30	54 33 30 29 40 29 33	50 27 38 27 37 40 37 38	8 39 38 39 40 39 38	54 35 34 39 39 40 29 35	30 37 38 37 37 40 37 3			
l	PM1.0	34 35 34 35 35 36 35 34	34 35 M 35 35 36 35 M	M 35 M 35 35 36 35 M	M 35 M 35 35 36 35 M	34 35 34 35 35 35 34	* * * * * * * *			
L	00									

22:43 | 50,7KB/s 🟵 🛛 🔕 🗉 😤 In In FÅ-MÅ ? Q Search a location × AQI ✓ Select \sim Công viên nước Hồ Tây QL3 lòa Bình DICH ONG HÂU YÊN HOÀ TRUNG HOÀ 9 Hoc Kinh Te Trường Đại học Hà Nội Nhà Thi đấu uvên Thanh Tr viện Đa khoa 🖪 151-200 201-300 (j) \oslash 8 0 1:1 Fi-Mi AOI Fi-Mi Traffi Analusi

A Realtime air quality monitoring and forecasting webpage and smartphone app

?

Ē

(i)

Software implementation

• Demo

Agenda

- Overview of the project
- Fi-Mi architecture
- Hardware implementation
- Al core
- Software implementation
- Conclusion and Future work

FĨ-M

Conclusion and Future work

What we have done

- Proposed a mobile air quality monitoring system
- Implemented 30 devices
- Finished the testing phase, going to the real deployment
- Implemented the software system
- Proposed AI models for calibration and forecasting
- Future work
 - Real deployment
 - Test the proposed method on the real system

