

Property Inference for Deep Neural Networks

Research Engineer, Singapore Management University

Thanh Le-Cong

Hanoi, August 4th 2022

Self-Introduction

Personal Information:

- Le Cong Thanh
- Email: <u>tlecong@smu.edu.sg</u>, <u>thanhcls1316@gmail.com</u>
- Website: thanhlecongg.github.io

Education:

• B.Eng in Information Technology from HUST, K61

Research Interests:

- Automated Debugging:
 - Bug Detection, Localization & Repair
- Deep Neural Networks Analysis

Software Engineering

This Talk - Overview

1. DNN & Its Challenges

2. Prophecy: Property Inference for Deep Neural Network

3. GNN-Infer: Towards the Analysis of Graph Neural Network

DNNs - A powerful framework for solving complex tasks, ...

Image Classification

Object Detection

Machine Translation

..., and even safety-critical tasks

Autonomous Driving

Medical Diagnosis

Security System

However, can we trust DNNs?

Autonomous Driving

Medical Diagnosis

Security System

Researcher say "NO"

Diagnosis: Benign

Adversarial rotation (8)

The patient has a history of back pain and chronic alcohol abuse and more recently has been seen in several...

Adversarial text substitution (9)

Opioid abuse risk: High

"Adversarial attacks on medical machine learning" by Finlayson et al., Science (2019)

Opioid abuse risk: Low

Lack of Robustness

• Small changes to an input may lead to unexpected behaviours

Lack of Explainability

• It is **not well understood** why a network gives a particular output

Scalability

• DNNs are very large, highly interconnected structures; often have huge input spaces

 \implies prevent thorough verification/testing

Lack of Robustness

• Small changes to an input may lead to unexpected behaviours

Lack of Explainability

• It is **not well understood** why a network gives a particular output

Scalability

• DNNs are very large, highly interconnected structures; often have huge input spaces

 \implies prevent thorough verification/testing

Can we provide insights about the behaviors of DNN?

Analysis of Deep Neural Networks

DNN Verification

" Dee Snider was inspired to do a two part song by a horror movie. ... This movie is perfect if you want something to give you nightmares and make you cringe about the possible and probable. IT COULD HAPPEN!!"

Positive

" Suri was inspired to do a two part song by a horror movie. ... This movie is perfect if you want something to give you nightmares and make you cringe about the possible and probable. IT COULD HAPPEN !!"

" Jack was inspired to do a two part song by a horror movie. ... This movie is perfect if you want something to give you nightmares and make you cringe about the possible and

Negative!

probable. IT COULD HAPPEN!!

Fairness Testing

Property Inference for Deep Neural Network

Key ideas

- Infer properties, a.k.a explanations, of a DNN
- Properties can be proved to be valid (formal guarantee) on the network using a decision procedure

 $(x_1 \ge 3) \land (x_2 \le 1) \Rightarrow y_1 > y_2$

Key ideas

- Infer properties, a.k.a explanations, of a DNN
- Properties can be proved to be valid (formal guarantee) on the network using a decision procedure, i.e., verification

Decompose the **black-box** DNN into **a set of rules** aids in interpreting and understanding the behavior of DNNs

 $(x_1 \ge 3) \land (x_2 \le 1) \Rightarrow y_1 > y_2$ $(x_1 \ge 1) \land (x_2 \ge 6) \Rightarrow y_2 > y_1$ $(x_1 \ge 5) \land (x_2 \ge 4) \Rightarrow y_2 > y_1$

Formalizing properties

- A constraints in terms of the on/off activation pattern of neurons of the neural network
 - ReLU: f(x) = max(0,x)
 - ReLU(x) is on if x>0 and off if x <= 0
- Intuition: Piecewise linear nodes equivalent to conditional statements of traditional programs

 \Rightarrow logic of network can be capture in the activation patterns of neurons

Properties: $Pre \Rightarrow Post$

- Pre is a conjunction of constraints on **neurons**
- Post is a certain output property
- Pre is actually convex region in input space

Theorem: For all \prec -closed patterns σ , $\sigma(X)$ is **convex**, and has the form:

$$\bigwedge_{i \text{ in } 1..|on(\sigma)|} W_i \cdot X + b_i > 0 \land \bigwedge_{j \text{ in } 1..|off(\sigma)|} W_j \cdot X + b_j \le 0$$

 W_i, b_i, W_j, b_j are constants derived from the weight and bias parameters of the network.

Input Properties

Property Inference:

- Concolic Execution and Iterative Relaxation of path constraints;
- Decision Tree over on/off activation patterns on training dataset; verify patterns with decision procedure, i.e. Reluplex

Algorithm 1 Iterative relaxation algorithm to extract input properties from input X.

1: // Let k be the layer before output layer 2: // We write \mathcal{N}^l for the neurons at layer l

3: $\sigma = \sigma_X$ // Activation signature of input X 4: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 5: if sat then return $\sigma(X) \wedge P(F(X))$ 6: l = k7: while l > 1 do $\sigma = \sigma \ \setminus \ \mathcal{N}^l$ 8: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 9: if sat then 10: // Critical layer found 11: cl = l12: // Add back activations from critical layer 13: $\sigma = \sigma ~\cup ~\mathcal{N}^{cl}$ 14: for each $N \in \mathcal{N}^{cl}$ do 15: $\sigma' = \sigma \setminus \{N\}$ 16: $sat = \mathbf{DP}(\sigma'(X), P(F(X)))$ 17: if $\neg sat$ then 18: // Neuron N can remain unconstrained 19: $\sigma = \sigma'$ 20: return $\sigma(X)$ 21: else 22: l = l - 123:

Prophecy: Property Infere Gopinath, D., Converse IEEE/ACM International Conference

Property Inference:

- Concolic Execution and Iterative Relaxation constraints;
- Decision Tree over on/off activation patter training dataset; verify patterns with decis procedure, i.e. Reluplex

Check if an activation pattern σ implies a cert property P(F(x)) (*)

ence fo	r D	eep Neural Networks
e, H., Pasare	anu	, C. and Taly, A.
e on Automa	hate	Software Engineering 2019
	Algo prop	rithm 1 Iterative relaxation algorithm to extract in erties from input X .
	1: /	/ Let k be the layer before output layer
	2: /	We write \mathcal{N}^l for the neurons at layer l
n of path	3: 0	$\sigma = \sigma_X$ // Activation signature of input X
	4: 8	$sat = \mathbf{DP}(\sigma(X), P(F(X)))$
	5: i	f sat then return $\sigma(X) \wedge P(F(X))$
	6: l	k = k
ms on	7: 1	while $l > 1$ do
	8:	$\sigma=\sigma~\setminus~\mathcal{N}^l$
sion	9:	$sat = \mathbf{DP}(\sigma(X), P(F(X)))$
	10:	if sat then
	11:	// Critical layer found
	12:	cl = l
	13:	// Add back activations from critical layer
	14:	$\sigma = \sigma ~ \cup ~ \mathcal{N}^{cl}$
	15:	for each $N \in \mathcal{N}^{cl}$ do
tain output	16:	$\sigma' = \sigma \setminus \{N\}$
	17:	$sat = \mathbf{DP}(\sigma'(X), P(F(X)))$
	18:	if $\neg sat$ then
	19:	// Neuron N can remain unconstrained
	20:	$\sigma = \sigma'$
	21:	return $\sigma(X)$
	22:	else
	23:	l = l - 1

Property Inference:

- Concolic Execution and Iterative Relaxation of path constraints;
- Decision Tree over on/off activation patterns on training dataset; verify patterns with decision procedure, i.e. Reluplex

Algorithm 1 Iterative relaxation algorithm to extract input properties from input X.

- 1: // Let k be the layer before output layer
- 2: // We write \mathcal{N}^l for the neurons at layer l

3: $\sigma = \sigma_X$ // Activation signature of input X 4: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 5: if sat then return $\sigma(X) \wedge P(F(X))$ 6: l = k7: while l > 1 do $\sigma = \sigma \ \setminus \ \mathcal{N}^l$ 8: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ if sat then 10: // Critical layer found 11: cl = l12: // Add back activations from critical layer 13: $\sigma = \sigma ~\cup ~\mathcal{N}^{cl}$ 14: for each $N \in \mathcal{N}^{cl}$ do 15: $\sigma' = \sigma \setminus \{N\}$ 16: $sat = \mathbf{DP}(\sigma'(X), P(F(X)))$ 17: if $\neg sat$ then 18: // Neuron N can remain unconstrained 19: $\sigma = \sigma'$ 20: return $\sigma(X)$ 21: else 22: l = l - 123:

Property Inference:

- Concolic Execution and Iterative Relaxation of path constraints;
- Decision Tree over on/off activation patterns on training dataset; verify patterns with decision procedure, i.e. Reluplex

Algorithm 1 Iterative relaxation algorithm to extract input properties from input X.

1: // Let k be the layer before output layer 2: // We write \mathcal{N}^l for the neurons at layer l3: $\sigma = \sigma_{Y}$ // Activation signature of input X

5.	$0 = 0_X \pi$ metration signature of input π
4:	$sat = \mathbf{DP}(\sigma(X), P(F(X)))$
5:	if sat then return $\sigma(X) \wedge P(F(X))$
6:	l=k
7:	while $l > 1$ do
8:	$\sigma = \sigma \ \setminus \ \mathcal{N}^l$
9:	$sat = \mathbf{DP}(\sigma(X), P(F(X)))$
10:	if sat then
11:	// Critical layer found
12:	cl = l
13:	// Add back activations from critical layer
14:	$\sigma=\sigma~\cup~\mathcal{N}^{cl}$
15:	for each $N \in \mathcal{N}^{cl}$ do
16:	$\sigma' = \sigma \setminus \{N\}$
17:	$sat = \mathbf{DP}(\sigma'(X), P(F(X)))$
18:	if $\neg sat$ then
19:	// Neuron N can remain unconstrained
20:	$\sigma = \sigma'$
21:	return $\sigma(X)$
22:	else
23:	l = l - 1

Property Inference:

- Concolic Execution and Iterative Relaxation constraints;
- Decision Tree over on/off activation patter training dataset; verify patterns with decis procedure, i.e. Reluplex

Remove each neurons of critical layer until (*) does not hold

Algorithm 1	Iterative relaxation	algorithm	to	extract	inp
properties from	n input X.				

	1: //]	Let k be the layer before output layer
	2: //	We write \mathcal{N}^l for the neurons at layer l
h of path	3: σ	$= \sigma_X \parallel$ Activation signature of input X
	4: <i>sa</i>	$t = \mathbf{DP}(\sigma(X), P(F(X)))$
	5: if	sat then return $\sigma(X) \wedge P(F(X))$
	6: <i>l</i> =	= k
ns on	7: wł	nile $l > 1$ do
	8:	$\sigma = \sigma \ \setminus \ \mathcal{N}^l$
sion	9:	$sat = \mathbf{DP}(\sigma(X), P(F(X)))$
	10:	if sat then
	11:	// Critical layer found
	12:	cl = l
	13:	// Add back activations from critical layer
	14:	$\sigma = \sigma ~ \cup ~ \mathcal{N}^{cl}$
	15:	for each $N \in \mathcal{N}^{cl}$ do
	16:	$\sigma' = \sigma \setminus \{N\}$
	17:	$sat = \mathbf{DP}(\sigma'(X), P(F(X)))$
	18:	if $\neg sat$ then
	19:	// Neuron N can remain unconstrained
	20:	$\sigma = \sigma'$
	21:	return $\sigma(X)$
	22:	else
	23:	l = l - 1

Property Inference:

- Concolic Execution and Iterative Relaxation of path constraints;
- Decision Tree over on/off activation patterns on training dataset; verify patterns with decision procedure, i.e. Reluplex

Remaining neurons are a minimal activation pattern

Algorithm 1 Iterative relaxation algorithm to extract input properties from input X.

- 1: // Let k be the layer before output layer 2: // We write \mathcal{N}^l for the neurons at layer l3: $\sigma = \sigma_X$ // Activation signature of input X 4: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 5: if sat then return $\sigma(X) \wedge P(F(X))$ 6: l = k7: while l > 1 do $\sigma = \sigma \ \setminus \ \mathcal{N}^l$ 8: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 9: if sat then 10: // Critical layer found 11: cl = l12: // Add back activations from critical layer 13: $\sigma = \sigma ~\cup ~\mathcal{N}^{cl}$ 14: for each $N \in \mathcal{N}^{cl}$ do 15: $\sigma' = \sigma \setminus \{N\}$ 16: $sat = \mathbf{DP}(\sigma'(X), P(F(X)))$ 17: if $\neg sat$ then 18: // Neuron N can remain unconstrained 19: $\sigma = \sigma'$ 20:
 - return $\sigma(X)$ 21: else 22:
 - l = l 123:

Algorithm 1 Iterative relaxation algorithm to extract input properties from input X.

1: // Let k be the layer before output layer 2: // We write \mathcal{N}^l for the neurons at layer l3: $\sigma = \sigma_X$ // Activation signature of input X 4: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 5: if sat then return $\sigma(X) \wedge P(F(X))$ 6: l = k7: **while** *l* > 1 **do** $\sigma = \sigma \ \setminus \ \mathcal{N}^l$ 8: $sat = \mathbf{DP}(\sigma(X), P(F(X)))$ 9: if sat then 10: // Critical layer found 11: cl = l12: // Add back activations from critical layer 13: $\sigma = \sigma ~\cup ~\mathcal{N}^{cl}$ 14: for each $N \in \mathcal{N}^{cl}$ do 15: $\sigma' = \sigma \setminus \{N\}$ 16: $sat = \mathbf{DP}(\sigma'(X), P(F(X)))$ 17: if $\neg sat$ then 18: // Neuron N can remain unconstrained 19: $\sigma = \sigma'$ 20: return $\sigma(X)$ 21: else 22: l = l - 123:

Scalability

Depends on the number of layers & neurons But, the number of neurons can be very large

Decision Procedure/ Verification is timeconsuming for big DNNs

Property Inference:

- Concolic Execution and Iterative Relaxation of path constraints; under-approx. boxes with LP solving
- Decision Tree over on/off activation patterns on training dataset; verify patterns with decision procedure, i.e. Reluplex

$\langle x_1, x_2 angle$	$\langle N_{1,1}, N_{1,2} \rangle$	P(F(X))
$\langle 0, -1 angle$	$\langle \textit{on},\textit{off} \rangle$	True
$\langle 1,0 angle$	$\langle on, on angle$	True
$\langle 0,1 angle$	$\langle \textit{off},\textit{on} angle$	False
$\langle 4,3 angle$	$\langle on, on angle$	False
$\langle 1, -1 \rangle$	$\langle \textit{on},\textit{off} angle$	True

- Generating explanations with formal guarantee
- Finding adversarial examples
- Build simple models (distillation)
- Decompose hard proofs, i.e. verification

Results for ACASXU

• Discover **novel properties** validated by domain experts

Property 1: All inputs within the following region, 36000 \leq range \leq 60760, 0.7 $\leq \theta \leq$ 3.14, -3.14 $\leq \psi \leq$ -3.14 + 0.01, $900 \le v_{own} \le 1200$, $600 \le v_{int} \le 1200$, should have the turning advisory as COC. This property takes approx. 31 minutes to check with Reluplex.

Applications

Property 2: All the inputs within the following region: $12000 \le range \le 62000$, $(0.7 \le \theta \le 3.14)$ or $(-3.14 \le 0.14)$ $\theta \leq -0.7$), $-3.14 \leq \psi \leq -3.14 + 0.005$, $100 \leq v_{own} \leq -3.14 + 0.005$ 1200, $0 \le v_{int} \le 1200$, should have the turning advisory as COC. This property has a large input region and direct verification with Reluplex times out after 12 hours.

Property 3: All the inputs within the following region: range > 55947.691, -3.14 $\leq \theta \leq 3.14$, -3.14 $\leq \psi \leq$ 3.14, $1145 \leq v_{own} \leq 1200, 0 \leq v_{int} \leq 60$, should have the turning advisory as Clear-of-Conflict (COC). This property takes approx. 5 hours to check with Reluplex.

Follow Up Work

Follow-up Works

- Abduction-Based Explanations for Machine Learning Models, AAAI 2019
- Property Inference in ReLU nets using Linear Interpolants, VNN 2020
- Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors, CVPR 2020
- Scaling Symbolic Methods using Gradients for Neural Model Explanation, ICLR 2021
- Towards the Analysis of Graph Neural Network, ICSE 2022

Applications

- NNrepair: Constraint-Based Repair of Neural Network Classifiers, CAV 2021 • Provably Robust Adversarial Examples, ICLR 2022

GNNInfer: Towards the Analysis of Graph Neural Networks

Graph Neural Networks

The structure of GNN depends on graph inputs ⇒ **dynamic** network structure

$$m_{j \rightarrow i} = f_{msg}(x_i, x_j, e_j)$$

 $m_i = f_{agg}(\{m_{j \rightarrow i} | \forall j \in \mathcal{N}(i)$
 $x_i = f_{upd}(x_i, m_j)$

Dynamic Structure

Influential Substructures

Previous works[1,2] hinted there exist influential substructures that significantly **contribute** to the trained GNN's prediction

[1] GNNExplainer: Generating Explanations for Graph Neural Networks, Ying et al., NIPS 2021

[2] PGMExplainer: Probabilistic graphical model explanations for graph neural networks, Vu et al., NIPS 2020

Dynamic Structure

- **Fixed sizes**: convertible to FFNNs for analysis
- Significant contribution: less works for analysis to be equivalent to full GNN computation

GNN-Infer

Substructure Miner

 Influential Substructure Detection: GNN-Infer employs GNNExplainer to detect local influential substructures for each instances in training data

Matched instances

Feature Property Inference

/////	////	11	1/	11	2
y_1y_1	\geq	•	•		l
$\overline{y_2y_2}$	\geq	•	•	•	Ŋ
[]]]]]	[]]]	Z,	Ż	1	Ø

- **Unroll:** GNN-Infer unroll GNN over influential substructures to equivalent FFNNs
- Match: GNN-Infer match influential substructures with training instances to obtain inputs for unrolled FFNNs
- Inference: GNN-Infer infer properties of unrolled FFNNs using existing DNN analyses, i.e., Prophecy & Marabou
- Equivalent Analysis: GNN-Infer employs decision tree to find condition ensuring that feature properties holds on GNN over full graphs

Evaluation

- **Benchmark:** Neural Execution of Graph Algorithm: BFS, DFS, Bellman-Ford, ...
- **GNN-Handcraft:** A GNN is manually constructed ==> Correct
- **Criteria:** Check the correctness of inferred properties

Towards the Analysis of Graph Neural Networks T. -D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh IEEE/ACM International Conference on Software Engineering 2022

Sample: BFS

- Property 1: $\exists x \in N, (x, t) \in E \land v(x) = 1 \Rightarrow v(t) = 1$
- Property 2:
 - $\forall x \in N, (x, t) \in E \land v(x) = 0 \Rightarrow v(t) = 0$
- **Property 3:** $\forall t, v(t) = 1 \Rightarrow v(t) = 1$

Challenges and Opportunities

Can activation patterns are enough?

Formalizing properties

- A constraints in terms of the on/off activation pattern of neurons of the neural network
 - ReLU: f(x) = max(0,x)
 - ReLU(x) is on if x > 0 and off if x <= 0
- Intuition: Piecewise linear nodes equivalent to conditional statements of traditional programs

 \Rightarrow logic of network can be capture in the activation patterns of neurons

"Are there some logic rules that satisfies different activation patterns?"

Complex Neural Networks ...

Network