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This Talk - Overview



Agenda

1. DNN & Its Challenges
2. Prophecy: Property Inference for Deep Neural Network

3. GNN-Infer: Towards the Analysis of Graph Neural Network



DNNs - A powerful framework
for solving complex tasks, ...

Image Object Machine
Classification Detection Translation




..., and even safety-critical tasks

Medical
Autonomous Diagnosis
Driving

Security
System



However, can we trust DNNs ?

Medical
Autonomous Diagnosis
Driving

Security
System



Researcher say "NO”

B | Benign | Berign
| Malignant I | \alignant

| | I | I I I I I 1 I 1

Model confidence /—\‘ Model confidence

Diagnosis: Malignant

Adversarial
rotation (8)

Diagnosis: Benign

The patient has a history of Adversarial The patient has a history of

back pain and chronic alcohol text substitution (9) lumbago and chronic alcohol

abuse and more recently has -_— dependence and more recently

been seen in several... has been seen in several...
Opioid abuse risk: High Opioid abuse risk: Low

“Adversarial attacks on medical machine learning”
by Finlayson et al., Science (2019)



Challenges

Lack of Robustness

e Small changes to an input may lead to unexpected behaviours

Lack of Explainability

e |t is not well understood why a network gives a particular output

Scalability

e DNNs are very large, highly interconnected structures; often have huge input spaces

— prevent thorough verification/testing



Challenges

Lack of Robustness

e Small changes to an input may lead to unexpected behaviours

Lack of Explainability

e |tis not well understood why a network gives a particular output

Scalability

e DNNs are very large, highly interconnected structures; often have huge input spaces

— prevent thorough verification/testing

Can we provide insights about the behaviors of DNN?



Analysis of Deep Neural Networks

Verifier * UNSAT

UNKNOWN

Property

% dog
% dog?

any noise in
perturbation set

DNN Verification

“ Suri was inspired to do a two part
song by a horror movie. ... This movie
is perfect 1if you want something to
give you nightmares and make you
“ Dee Snider was inspired to do a two cringe about the possﬂlble and
part song by a hOI‘I’OII)‘ movie. ... This / probable. IT COULD%PPEN”
movie 1s perfect if you want something Negative!
to give you nightmares and make you \

cringe about the possible and
probable. IT COULD HAPPEN!!"”

- “ Jack was 1nspired to do a two part
adv ~=-—_ Positivel song by a horror movie. ... This movie

. C, is perfect 1if you want something to
(missed by attack) at

give you nightmares and make you
cringe about the possible and
probable. IT COULD HZAPPEN!!”

Robustness Testing
(Adversarial Attack) Fairness Testing



Property Inference
for Deep Neural Network




Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Software Engineering 2019

Key ideas
e |nfer properties, a.k.a explanations, of a DNN

e Properties can be proved to be valid (formal
guarantee) on the network using a decision
procedure

Input Layer 1 Layer 2 Output

1.0 0.5 1.0

2

1.0 0.1 1.0

X1

1.0

-1.0

X 23N 1D)=>y >y



Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Software Engineering 2019

Key ideas
e |nfer properties, a.k.a explanations, of a DNN

e Properties can be proved to be valid (formal

-

guarantee) on the network using a decision
procedure, I.e., verification

Decompose the black-box DNN into a set of rules

aids In Interpreting and understanding the
behavior of DNNs

Input Layer 1 Layer 2 Output

1.0 0.5 1.0

2

1.0 0.1 1.0

X1

1.0

-1.0

(x1>3)/\(x2 1)$y1>y2
X 2 DA 26)=y,>y
X Z25)Ax=24)=>y, >y



Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Software Engineering 2019

Formalizing properties

e A constraints in terms of the on/off activation Input Layer 1 Layer 2 Output
pattern of neurons of the neural network

e RelLU: f(x) = max(0,x)

e RelLU(x)ison if x>0 and off if x <=0

e |ntuition: Piecewise linear nodes equivalent to
conditional statements of traditional programs off(N} 1) A on(N; ) A on(N, 1) A off(IN,5) = y; > ¥,

= logic of network can be capture in the activation
patterns of neurons



Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Software Engineering 2019

Input Properties
Input Layer 1 Layer 2 Output

Properties: Pre = Post

e Preis a conjunction of constraints on neurons
e Postis a certain output property

e Pre is actually convex region in input space

Theorem: For all <-closed patterns o, 6(X)
IS convex, and has the form:

AN Wi X+b>0A N\ W -X+5<0
iin 1..|on(o)| jin 1..|off(o)|
W, b;, W, b; are constants derived from the

weight and bias parameters of the network.

Layer Properties
Input Layer 1 Layer 2 Output




Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Saftwara Fnainearina 2010

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

Pro pe rty Inference: 1: // Let k be the layer before output layer

2: // We write N/' for the neurons at layer !
e Concolic Execution and lterative Relaxation of path 3: 0 = ox // Activation signature of input X
4: sat = DP(0(X), P(F(X)))
constraints; 5. if sat then return o(X) A P(F (X))
6: |l =k
7: while [ > 1 do
8 oc=0 \ N
9 sat = DP(o(X), P(F (X))
10: if sat then
11: // Critical layer found
12: cl =1
13: // Add back activations from critical layer
14: c=0 U N9
15: for each N € N do
16: o =0 \ {N}
17: sat = DP(0¢'(X), P(F(X))
18: if —sat then
19: // Neuron N can remain unconstrained
20: o=o'
21: return o(X)
22: else

23: [=1—-1




Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Saftwara Fnainearina 2010

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

Pro pe rty Inference: 1: // Let k be the layer before output layer

2: A‘.I‘Ao 1) o1

e Concolic Execution and lterative Relaxation of path 3] 0 = ox // Activation signature of input X
44 sat = DP(o(X), P(F(X

constraints; 5. if sat then return o(X) A P(F(X))

6: |l =k
7: while [ > 1 do
8: oO=0 \ Nl
9 sat = DP(o(X), P(F (X))
10: if sat then
11: // Critical layer found
12: cl =1
13: // Add back activations from critical layer
14: oc=0 U N¢
15: for each N € N do
Check if an activation pattern ¢ implies a certain output e o' =0 \ {N}
17: sat = DP(o’(X), P(F (X
property P(F(x)) ( oot then
19: // Neuron N can remain unconstrained
20: oc=o'
21: return o(X)
22: else

23: [=1—-1




Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Saftwara Fnainearina 2010

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

Pro pe rty Inference: 1: // Let k be the layer before output layer

// We write N'* for the neurons at layer !
o = ox // Activation signature of input X
sat = DP(o(X), P(F(X)))
if sat then return o(X) A P(F(X))
[ =k
while [ > 1 do

oc=0 \ N

sat = DP(o(X), P(F (X))

if sat then

// Critical layer found
cl =1

e (Concolic Execution and Iterative Relaxation of path
constraints;

e RS R

e e Y e T
W N \= O

// Add back activations from critical layer

14: oc=0 U N
, o - 15: for each N € N do
FInd minimal activation patterns s o' =0 \ {N}
such that (*) holds 17 sat = DP(o"(X), P(F(X))
18: if —sat then
19: // Neuron N can remain unconstrained
20: oc=o'
21: return o(X)
22: else

23: [=1—-1




Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Saftwara Fnainearina 2010

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

Pro pe rty Inference: 1: // Let k be the layer before output layer

2: // We write N/' for the neurons at layer !
o Concolic Execution and Iterative Relaxation of path 3: 0 = ox // Activation signature of input X
4: sat = DP(0(X), P(F(X)))
constraints; 5. if sat then return o(X) A P(F (X))

6: |l =k

7: while [ > 1 do

9: sat = DP(o(X), P(F (X

10: if sat then

11: // Critical layer found

12: cl =1

13: // Add back activations from critical layer
14: c=0 U N9

15: for each N € N do

Remove each layer until (*) does 1 o' =0 \ {N}
not hold 17: ..sat = DP(¢'(X), P(F(X))

18: if —sat then

19: // Neuron N can remain unconstrained
20: o=o'
21: return o(X)
22: else

23: [=1—-1




Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Saftwara Fnainearina 2010

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

Pro pe rty Inference: 1: // Let k be the layer before output layer

2: // We write N/' for the neurons at layer !
3: 0 = ox // Activation signature of input X
4: sat = DP(o(X), P(F(X)))

5. if sat then return o(X) A P(F (X))

6: | =k
7
8
9

e (Concolic Execution and Iterative Relaxation of path
constraints;

: while [ > 1 do

oc=0 \ N

sat = DP(o(X), P(F (X))
10: if sat then

11: // Critical layer found
12: cl =1
13: // Add back activations from critical layer

Remove each neurons of critical 14: c=0 U N¢

TRy - 15 for each N € V¢ do
layer until (*) does not hold - o — o\ {N}

17:
18: if —sat then
19: // Neuron N can remain unconstrained
20: oc=o'
21: return o(X)
22: else

23: [=1—-1




Prophecy: Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Saftwara Fnainearina 2010

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

Pro pe rty Inference: 1: // Let k be the layer before output layer

2: // We write N/' for the neurons at layer !
3: 0 = ox // Activation signature of input X
4: sat = DP(o(X), P(F(X)))

5. if sat then return o(X) A P(F (X))

6: | =k
7
8
9

e (Concolic Execution and Iterative Relaxation of path
constraints;

: while [ > 1 do

oc=0 \ N

sat = DP(o(X), P(F (X))
10: if sat then

11: // Critical layer found
12: cl =1
13: // Add back activations from critical layer
Remaining neurons are a 14 o=0 U N
L L. 15: for each N € N do
minimal activation pattern 6. o' =0 \ {N}
17: sat = DP (o’ P(F (X

if —sat then

18:

// Neuron N can remain unconstrained
20: oc=o'
21: return o(X)
22: else

23: [=1—-1




Scalability

Algorithm 1 Iterative relaxation algorithm to extract input
properties from input X.

1: // Let k be the layer before output layer

2: // We write N' for the neurons at layer [

3: 0 = ox // Activation signature of input X

4: sat = DP(o(X), P(F(X)))

S. If sat then retura o(X) A P(F(X) Depends on the number of layers & neurons
6: / But, the number of neurons can be very large
7 hile

8:

9: , P(F(X))

10: if sat then

11: // Critical layer found

12: cl =1

13: // Add back activations from criti€al layer

14:

15: L.

16: Decision Procedure/

" " Verification is time-

19: // Neuron N can remain unconstrained Consuming for blg DNNSs

20: o=o'

21: return o(X)

22: else

[=1-1

N
o




Property Inference for Deep Neural Networks

Gopinath, D., Converse, H., Pasareanu, C. and Taly, A.
IEEE/ACM International Conference on Automated Software Engineering 2019

Property Inference:

(T1,72) (N1,1,N1,2) P(F(X))
(0,—1) (on, off) True
(1,0) (om, on) True
(0,1) (off , on) False
. N al
e Decision Tree over on/off activation patterns on g i>1> EZZ ng)) ?msf
training dataset; verify patterns with decision
procedure, I.e. Reluplex N 1
on off
N7,2 False
on off

True, False True



e Finding adversarial examples
e Build simple models (distillation)

e Decompose hard proofs, I.e. verification

Results for ACASXU

Applications

e (Generating explanations with formal guarantee

Results for MNIST

. - s Frecicton -

p=1 P=2 P=2

Property 2: All the inputs within the following region:

e Discover novel properties validated by domain 12000 < range < 62000, (0.7 < 0 < 3.14) or (-3.14 <

experts

Property 1: All inputs within the following region, 36000
< range < 60760, 0.7 < 0 < 3.14, -3.14 < ¢ < -3.14
+ 0.01, 900 < vy, < 1200, 600 < v;,y < 1200, should

have the turning advisory as COC. This property takes
approx. 31 minutes to check with Reluplex.

0 < -0.7), -3.14 < ¢ < -3.14 + 0.005, 100 < vy <

1200, 0 < vy, < 1200, should have the turning advisory

as COC. This property has a large input region and direct
verification with Reluplex times out after 12 hours.

Property 3: All the inputs within the following region:
range > 55947.691, -3.14 < 0 < 3.14, -3.14 < ¢ <
3.14, 1145 < v,,, < 1200, 0 < v;,;; < 60, should have
the turning advisory as Clear-of-Conflict (COC). This
property takes approx. 5 hours to check with Reluplex.



Follow Up Work

Follow-up Works
e Abduction-Based Explanations for Machine Learning Models, AAAI 2019
e Property Inference in ReLU nets using Linear Interpolants, VNN 2020

e Programmatic and Semantic Approach to Explaining and DebuggingNeural Network
Based Object Detectors, CVPR 2020

e Scaling Symbolic Methods using Gradients for Neural Model Explanation, ICLR 2021

e Towards the Analysis of Graph Neural Network, ICSE 2022

Applications

e NNrepair: Constraint-Based Repair ofNeural Network Classifiers, CAV 2021

e Provably Robust Adversarial Examples, ICLR 2022



GNNInfer: Towards the Analysis of
Graph Neural Networks



Towards the Analysis of Graph Neural Networks

T.-D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh
IEEE/ACM International Conference on Software Engineering 2022

Layer N Layer N+1
U f e » U, mj—i = fmsg (xi, Xjs eji)
\ y fv ........................... .V m; = fa;gg({mj—)ilvj € N(l)})
A ) n+1
Xi = ﬁ;pd (X,‘, mi)
En fE """""""""""""" > En+1

Graph Neural Networks

Dynamic Structure

The structure of GNN depends on graph
iInputs = dynamic network structure



“Basketball” ........ . -B

Towards the Analysis of Graph Neural Networks

T.-D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh
IEEE/ACM International Conference on Software Engineering 2022

§i = "Basketball” §; = “Sailing”

::. ..:- * Irrelevant O : Relevant, but not influential
Q : Influential O : Target node

o “ .
4 v ¢
- - &
9 . %—\

“Sailing” 7/4—/—=

Influential Substructures

Dynamic Structure

Previous works[1,2] hinted there exist

influential substructures that significantly

contribute to the trained GNN's prediction »
[1] GNNExplainer: Generating Explanationsfor Graph Neural

Networks, Ying et al., NIPS 2021

e Fixed sizes: convertible to FFNNSs for

analysis

e Significant contribution: less works for

[2] PGMExplainer: Probabilistic graphical model explanations analUSlS to be equwalent to full GNN

for graph neural networks, Vu et al., NIPS 2020 computation



Towards the Analysis of Graph Neural Networks

T.-D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh
IEEE/ACM International Conference on Software Engineering 2022

Substructure Miner

4 )
Trained

GNN

& /

>

Miner

@

Sub-structure

'%M

Training

(dataset

Property Inference

-
Unrolling@/
A
j Target
subl sub2 G sub3 N

J

Influential Structure

Match ©

// \\ 4 )
SR @
AN Infer Input
> N~ 7 »
(2 >4 g Feature Property
\\ N/ N\ /
\_ —
Rolled out FFNNs
4
2
!
W2 :132 -~ o /
L ////////// ////////////////////
Input feature property
/ - /\A\\
4 N
Gsubl \ 4
g ®
Equivalent Analysis
\\ < \ /
N\ L/

Matched instances

GNN-Infer




4 )
Trained

GNN

N\ J

>

\datasgt/

Towards the Analysis of Graph Neural Networks

T.-D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh
IEEE/ACM International Conference on Software Engineering 2022

" >

Training

Sub-structure
Miner

; Target
@ subl sub2 Gsub3 )

>

=Y

/

Influential Structure

Substructure Miner

e Influential Substructure Detection:
GNN-Infer employs GNNExplainer to
detect local influential substructures for
each Iinstances in training data

e Influential Substructure Miner: GNN-
Infer employs Subdue to mine (frequent)
subgraph from local influential
substructures as (global) influential
substructures



Towards the Analysis of Graph Neural Networks

T.-D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh
IEEE/ACM International Conference on Software Engineering 2022

‘ @

Infer Input

-
Unrolling@/
A
O| Target
(;subl sub2 (;subB N

>

/

Inﬂuentlal Structure

~ ™~
(r N
— A
» N |
:1 )
‘, «
\ PV
\\ ) )

Rolled out FFNNs

Y
Match ©

Matched instances

/7 o N\
4 N
(;subl
.
| o
AN Y

Feature Property

W2 :Bz
YA /////l///

Input feature property

Y

Equivalent Analysis

.

g ®

S

Feature Property Inference

o Unroll: GNN-Infer unroll GNN over influential

substructures to equivalent FFNNs

e Match: GNN-Infer match influential
substructures with training instances to

obtain inputs for unrolled FFNNs

e Inference: GNN-Infer infer properties of

unrolled FFNNs using existing DNN analyses,

l.e., Prophecy & Marabou

e Equivalent Analysis: GNN-Infer employs
decision tree to find condition ensuring t
feature properties holds on GNN over ful
graphs

Nat




Towards the Analysis of Graph Neural Networks

T.-D. Nguyen, T. Le-Cong, T. H. Nguyen, X. -B. D. Le and Q. -T. Huynh
IEEE/ACM International Conference on Software Engineering 2022

Evaluation Sample: BFS

e Benchmark: Neural Execution of Graph o Property 1:

Algorithm: BFS, DFS, Bellman-Ford, ... AxeEN,(x,H) EEAv) = 1= v({) = 1

e GNN-Handcraft: A GNN is manually
constructed ==> Correct

e Property 2:

VxeN,(x,) e EAv(x) =0=v() =0

e Criteria: Check the correctness of inferred

properties e Property3: Vi,v(t) =1=>v(r) =1






Challenges and Opportunities



Can activation patterns are enough?

Formalizing properties

e A constraints in terms of the on/off activation Input Layer 1 Layer 2 Output

pattern of neurons of the neural network

1.0 0.5 1.0

2

1.0 0.1 1.0

1.0

e RelLU: f(x) = max(0,x)

-1.0

e RelLU(x)ison if x>0 and off if x <=0 X2

e | Intuition: Piecewise linear nodes equivalent to
conditional statements of traditional programs (X0 <3AX>4)=y=0)

ANl(Xo—X1>0)=>y=1)

A((7Xg —6x1 > 0)=>y=1)

\ The intuition is reasonable but ...

'Is it enough ?"
"Are there some logic rules that satisfies different activation patterns ? *

= logic of network can be capture in the activation

patterns of neurons



Complex Neural Networks ...

fc_3
Fully-Connected
Neural Network

fc_ 4
Fully-Connected
Neural Network

Conv_1 Conv_2 RelLU activation |
Convolution Convolution P Ve ~
r )
(SI)'(dS) k:; el Max-Pooling (3 I)'(dS) k;(r;?el Max-Pooling (with
valid padding (2x2) valid padding (2x2) /"//’ﬂ‘wopom)
P> o /| \ .

—_—
-,

...........

n2 channels
(8x8xn2)

nl channels

(24 x 24 x nl)

nl channels
(12x12 xnl)

Complex FFNNs

INPUT
(28 x 28 x 1)

DA

JAGe ___, h(-) )

(4x4 xn2)

A _) AC ,

D |
L h é h“‘r-->
W

N /

TU Unfold

X X X X

Recurrent Neural
Network

/4 N\ ' N r N - l____» gty ',

n2 channels ||

|

v"'} \ A

A\
ll\-.:‘l‘i /
"z/ OUTPUT
n3 units
Input
4 N\
(=]
(o]
¢ O
® o]
Q
® o
" J

Hidden layer Hidden layer
\ .
/0 /0
iy | S
\ o © \ o
[¢]
® o
/ '
. P RelLU
(o] [o]
° '—’ e \
o ® o
o [¢]
(8] (o]
® o ® o
(<] [o]
RN RN

Graph Neural
Network




