Self-Supervised Vision-and-Language Pre-Training Wonjae Kim | 20230112 | @HUST

1. SSL Methods

- 1-1. Vision SSL Methods
- 1-2. Language SSL Methods 1-3. Considerations for SSL Methods
- 2. Vision-and-Language 2-1. Evolution of VLP Models 2-2. Considerations for VLP Models

Good Old Pre-Training

```
def good old pretraining(weights, images, labels):
    ** ** **
    weights: neural net model weights
    images: iterable batches of images
    labels: iterable labels paired with images
    ** ** **
    while not done:
        logits = model forward(weights, images)
        loss = cross entropy(logits, labels)
        weights = optimize(weights, loss)
    return weights
```

imagenet-1k¹, JFT-300M², Instagram-1B³

- 1. Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition.
- 2. Ngiam, Jiquan et al. "Domain Adaptive Transfer Learning with Specialist Models." ArXiv abs/1811.07056 (2018).
- ³· Yalniz, Ismet Zeki et al. "Billion-scale semi-supervised learning for image classification." ArXiv abs/1905.00546 (2019).

Sowhy SSL in vision?

Pretext Modeling¹

```
def pretext modeling(weights, images):
    ** ** **
    distort: a function distorts images and returns distorted images and the description
of the distortion.
    ** ** **
    while not done:
        distorted images, labels = distort(images)
        logits = model forward(weights, distorted images)
        loss = cross entropy(logits, labels)
        weights = optimize(weights, loss)
    return weights
```

1. Misra, Ishan, and Laurens van der Maaten. "Self-supervised learning of pretext-invariant representations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Jigsaw¹

Colorization²

- 1. Noroozi, Mehdi and Paolo Favaro. "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles." ECCV (2016).
- 2. Zhang, Richard et al. "Colorful Image Colorization." ECCV (2016).
- 3. Gidaris, Spyros et al. "Unsupervised Representation Learning by Predicting Image Rotations." ICLR (2018).

Rotation³

Contrastive Learning¹

```
def contrastive learning(weights, images):
    random view: "view" in contrastive learning context is a fancy way of calling augmentation, typically includes random
resized crop (RRC).
    ** ** **
    while not done:
        images1, images2 = random view(images, n=2)
        z1 = model forward(weights, images1, normalize=True)
        z2 = model forward(weights, images2, normalize=True)
        logits1 = z1 @ z2.t() / tau
        logits2 = z2 @ z1.t() / tau
        labels = arange(batch size)
        loss = cross entropy(logits1, labels) + cross entropy(logits2, labels)
        weights = optimize(weights, loss)
    return weights
```

1. Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." arXiv preprint arXiv:1807.03748 (2018).

Instance Discrimination¹

1. Wu, Zhirong, et al. "Unsupervised feature learning via non-parametric instance discrimination." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

NAVER ALLAR

Vomentum Contrast-

1. He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

Masked Image Modeling¹

```
def masked image modeling (weights, images):
    images: iterable tokenized batches of images
    VQ-VAE tokenizer for BEiT, patch tokenizer for MAE, iBOT; SplitMask tried multiple tokenizers.
    ** ** **
    while not done:
        masked images, targets = mask images(images, prob=prob value)
        logits = model forward(weights, masked images)
        loss = cross entropy(logits, targets) if discrete else regression(logits, targets)
        weights = optimize(weights, loss)
    return weights
```

1. Xie, Zhenda, et al. "Simmim: A simple framework for masked image modeling." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Vasked Autoencoder¹

1. He, Kaiming et al. "Masked Autoencoders Are Scalable Vision Learners." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

NAVER **ALLAR**

1. Bao, Hangbo, et al. "BEiT: BERT Pre-Training of Image Transformers." International Conference on Learning Representations. 2021.

The Home of SSL: Language

Deep Contextualized Word Representations¹

```
def language modeling elmo(weights, texts):
    texts: iterable tokenized batches of texts
    ** ** **
    while not done:
        logits = model forward(weights, texts)
        reverse logits = model forward(weights, texts[::-1])
        loss = cross entropy(logits[1:], texts[:-1])
        reverse loss = cross entropy(reverse logits[1:], texts[:-1][::-1])
        weights = optimize(weights, loss + reverse loss)
    return weights
```

Peters, Matthew E. et al. "Deep Contextualized Word Representations." NAACL 1. (2018).

Generative Pre-Training¹²³

```
def language modeling gpt(weights, texts):
** ** **
texts: iterable tokenized batches of texts
** ** **
    while not done:
        causal mask = lower triangle(texts.length)
        logits = model forward(weights, texts, attention mask=causal mask)
        loss = cross entropy(logits[1:], texts[:-1])
        weights = optimize(weights, loss)
    return weights
```

- 1. Radford, Alec and Karthik Narasimhan. "Improving Language Understanding by Generative Pre-Training." (2018).
- 2. Radford, Alec et al. "Language Models are Unsupervised Multitask Learners." (2019).
- 3. Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding¹²³

def language modeling bert(weights, texts): texts: iterable tokenized batches of texts while not done: masked texts, labels = mask texts(texts, prob=0.15) logits = model forward(weights, texts) loss = cross entropy(logits, masked texts) weights = optimize(weights, loss) return weights

- 1. Kenton, Jacob Devlin Ming-Wei Chang, and Lee Kristina Toutanova. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." Proceedings of NAACL-HLT. 2019.
- 2. Liu, Yinhan, et al. "RoBERTa: A Robustly Optimized BERT Pretraining Approach." (2019).
- 3. Lan, Zhenzhong, et al. "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations." International Conference on Learning Representations. 2019.

Considerations for SSLVEINCS

1. What representations to use?

- 2. What metrics to use?
- 3. What parts to fine-tune?

1. What representations to use?

2. What metrics to use?¹

		MIM	MLM 2	FLAVA _C	FLAVA _{MM}	FLAVA w/o init	FLAVA 6	CLIP 7	CLIP
Datasets	Eval method	PMD	PMD	PMD	PMD	(PMD+IN-1k+CC	v News+BC)	PMD	400M [83]
MNI I [111]	fine-tuning	I _	73 23	70.99	76.82	78.06	80 33	32.85	33.52
CoLA [110]	fine-tuning	_	39.55	17.58	38.97	44 22	50.65	11.02	25 37
MRPC [29]	fine-tuning	_	73 24	76 31	79.14	78.91	84.16	68 74	69.91
OOP [49]	fine-tuning		86.68	85.94	88 49	98.61	88.74	59.17	65 33
SST-2 [97]	fine-tuning	_	87.96	86.47	89.33	90.14	90.94	83.49	88.19
ONLI [88]	fine-tuning	_	82.32	71.85	84.77	86.40	87.31	49.46	50.54
RTE [7, 25, 36, 40]	fine-tuning	_	50.54	51.99	51.99	54.87	57.76	53.07	55.23
STS-B [1]	fine-tuning	-	78.89	57.28	84.29	83.21	85.67	13.70	15.98
NLP Avg.		<u> </u>	71.55	64.80	74.22	75.55	78.19	46.44	50.50
ImageNet [00]	linear eval	41 70		74.09	74 34	73 /0	75 54	72.05	80.20
Food101 [11]	linear eval	53 30	-	87 77	87 53	87.30	88 51	85 40	01.56
CTEAP10 [58]	linear eval	76.20	_	07.77	07.33	07.59	00.31	01.45	91.50
CIFARIO [30]	linear eval	55 57	-	78 37	78.01	76.40	77.68	74.40	<u>94.93</u> 81.10
Ciracito [30]	linear eval	14 71	_	72 12	72.07	66.81	70.87	62.84	85.02
Aircraft [74]	linear eval	13.83	_	/2.12	18.00	44 73	10.07	40.02	51.40
DTD [20]	linear eval	55 53	_	76.86	76.91	75.80	77.29	73.40	78.46
DID [20] Date [70]	linear eval	34.48	_	84 98	84.93	82 77	84.82	79.40	91.66
Caltech101 [32]	linear eval	67.36	_	94.91	95 32	94.95	95 74	93.76	95.51
Flowers 102 [76]	linear eval	67.23	_	96.36	96.30	95 58	96 37	94.94	97.12
MNIST [60]	linear eval	96.40	_	08 30	90.39	95.56	08 12	94.94	99.01
STT 10 [21]	linear eval	80.12	_	98.55	98.30	08 32	08 80	97.30	99.01
SILIU [21] EuroSAT [41]	linear eval	95.48	_	97.00	96.91	97.04	97.26	95 70	95.05
CTSRB [100]	linear eval	63.14	_	78.92	77.93	77 71	79.46	76 34	88.61
KITTI [35]	linear eval	86.03	_	87.83	88 84	88 70	89.04	84.89	86.56
PCAM [106]	linear eval	85.10	_	85.02	85 51	85 72	85 31	83.99	83.72
UCE101 [98]	linear eval	46 34	_	82.69	82.90	81 42	83 32	77.85	85.12
CU EVR [52]	linear eval	61 51	_	79.35	81.66	80.62	79.66	73.64	75.89
EER 2013 [38]	linear eval	50.98	_	59.96	60.87	58.99	61.12	57.04	68.36
SUN307 [113]	linear eval	52.45	_	81.27	81 41	81.05	82.17	79.96	82.05
SST [83]	linear eval	57.77	_	56.67	59 25	56.40	57.11	56.84	74.68
Country211 [83]	linear eval	8.87	_	27 27	26.75	27.01	28.92	25.12	30.10
Vision Avg.	inical eval	57.46	_	79.14	79.35	78.29	79.44	76.12	82.57
	6			(7.12	71.60	71.00	70.40	50.01	54.02
VQAV2 [39]	fine-tuning	-	-	07.13	78.26	71.29	72.49	59.81 72.52	54.85
SINLI-VE [114]	fine-tuning	-	-	13.21	78.30	78.14	76.00	13.33	(4.27
Flight 20K [81] TD D @1	me-tuning	-	-	55.56	70.72 60.30	<u>77.45</u> 64.50	67.70	50.59	82.20
FlickISOK [81] IK K@1	Zero-shot	-	-	08.50	09.50	04.30	01.00	00.90	<u>82.20</u>
FlickF30K [81] IK K@3	zero-shot	-	-	93.30	92.90	90.30	94.00 65 22	66.90 56 49	<u>90.00</u>
FlickISOK [81] IK K@1	zero-shot	-	-	96.69	87.70	00.04	05.22	92 60	02.08
	zero-shot	-	-	42.08	07.70 13.49	20.99	42.74	35.00	52.00
COCO [66] TR R@1	zero shot	-	-	45.08	43.40	39.00 72.84	42.74	57.12	76.68
COCO [66] IR R@3	zero shot	-	-	73.82	38.46	72.04	28 28	33 20	70.08
	zero shot	-	-	67.29	<u>50.40</u> 67.68	64.63	67.47	62 47	59.27
Multimodal Avg	zero-snot	- _		66.25	69.11	67 32	69.92	62.02	67.29
Moore Ave		10.15		70.06	74.02	72.72	75.95	61.52	66.79
Macro Avg.		19.15	23.85	/0.06	74.23	13.12	75.85	61.52	66.78

1. Singh, Amanpreet, et al. "Flava: A foundational language and vision alignment model." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

3. What parts to fine-tune?¹

1. Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for fewshot learning." arXiv preprint arXiv:2204.14198 (2022).

Vision-and-Language¹

Figure 2. Four categories of vision-and-language models. The height of each rectangle denotes its relative computational size. VE, TE, and MI are short for visual embedder, textual embedder, and modality interaction, respectively.

Kim, Wonjae et al. "ViLT: Vision-and-Language Transformer Without 1. Convolution or Region Supervision." ICML (2021).

Vilbert¹

Figure 1: Our ViLBERT model consists of two parallel streams for visual (green) and linguistic (purple) processing that interact through novel co-attentional transformer layers. This structure allows for variable depths for each modality and enables sparse interaction through co-attention. Dashed boxes with multiplier subscripts denote repeated blocks of layers.

(a) Standard encoder transformer block

Figure 2: We introduce a novel co-attention mechanism based on the transformer architecture. By exchanging key-value pairs in multi-headed attention, this structure enables vision-attended language features to be incorporated into visual representations (and vice versa).

while not done:

images = BUTD tokenize(images) masked images, image targets = mask images(images, prob=0.15) masked texts, text targets = mask texts(texts, prob=0.15)

z texts = model forward(weights.text encoder, texts) z neg texts = shuffle(z texts, dim=batch dim) # you can sample negs in other ways z masked texts = model forward(weights.text encoder, masked texts)

z = model forward(weights.multimodal encoder, images, z texts) z neqs = model forward(weights.multimodal encoder, images, z neq texts) z masked = model forward(weights.multimodal encoder, masked images, z masked texts)

losses = compute mrm(weights, z masked, image targets) \ + compute mlm(weights, z masked, text targets) \ + compute itm(weights, z, z negs) weights = optimize(weights, loss) return weights

z masked images, z masked texts = split z(z masked) logits = model forward(weights.mrm head, z masked images) loss = loss fn(logits, image targets) return loss

z masked images, z masked texts = split z(z masked) logits = model forward(weights.mlm head, z masked texts) loss = cross entropy(logits, text targets) return loss

logits = model forward(weights.itm head, z)

neg logits = model forward(weights.itm head, z negs) targets, neg targets = ones(batch length), zeros(batch length) loss = cross entropy(logits, targets) + cross entropy(neg logits, neg targets)

Lu, Jiasen et al. "ViLBERT: Pretrainin<mark>g Täsk-Agnostic Visiolinguistic</mark> 1. Representations for Vision-and-Language Tasks." NeurIPS (2019).

 $H_{uu}^{(j)}$

UNITER¹

Fig. 1: Overview of the proposed UNITER model (best viewed in color), consisting of an Image Embedder, a Text Embedder and a multi-layer Transformer, learned through four pre-training tasks

def uniter(weights, images, texts): while not done: images = BUTD tokenize(images) masked texts, text targets = mask texts(texts, prob=0.15) other ways z = model forward(weights.multimodal encoder, images, texts) z negs = model forward(weights.multimodal encoder, images, neg texts) z masked = model forward(weights.multimodal encoder, masked images, masked texts) losses = compute mrm(weights, z masked, image targets) \ + compute mlm(weights, z masked, text targets) \ + compute itm (weights, z, z negs) \ + compute wra(weights, z, z negs) weights = optimize(weights, loss) return weights

1. Chen, Yen-Chun et al. "UNITER: UNiversal Image-TExt Representation Learning." ECCV (2020).

NAVER ALLAB

```
masked images, image targets = mask images(images, prob=0.15)
neg texts = shuffle(texts, dim=batch dim) # you can sample negs in
```

Pixel-BERT¹

def pixelbert(weights, images, texts): while not done: images = model forward(weights.cnn, images) masked texts, text targets = mask texts(texts, prob=0.15) neg texts = shuffle(texts, dim=batch dim) # you can z = model forward(weights.multimodal encoder, images, texts) z negs = model forward(weights.multimodal encoder, images, neg texts) z masked = model forward(weights.multimodal encoder, images, masked texts) losses = compute mlm(weights, z masked, text targets) + compute itm(weights, z, z negs) weights = optimize(weights, loss) return weights

1. Huang, Zhicheng et al. "Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Transformers." ArXiv abs/2004.00849 (2020)

ViLT¹

while not done: masked texts, text targets = mask texts(texts, prob=0.15) neg texts = shuffle(texts, dim=batch dim) # you can sample negs in other ways z = model forward(weights.multimodal encoder, images, texts) z negs = model forward(weights.multimodal encoder, images, neg texts) z masked = model forward(weights.multimodal encoder, images, masked texts)

losses = compute mlm(weights, z masked, text targets) \ + compute itm(weights, z, z negs) \ + compute wpa(weights, z, z negs) weights = optimize(weights, loss) return weights

1. Kim, Wonjae et al. "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision." ICML (2021).

Notable VLP models after ViLT

 $- ALBEF^{1}$ $-UFO^2$ - BLIP³ $-VLC^{4}$ - CoCa⁵

- 1. Li, Junnan et al. "Align before Fuse: Vision and Language Representation Learning with Momentum Distillation." Neurips (2021).
- ²· Wang, Jianfeng, et al. "UFO: A unified transformer for vision-language representation learning." arXiv preprint arXiv:2111.10023 (2021).
- ³· Li, Junnan, et al. "Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation." arXiv preprint arXiv:2201.12086 (2022).
- 4. Gui, Liangke, et al. "Training Vision-Language Transformers from Captions Alone." arXiv preprint arXiv:2205.09256 (2022).
- ⁵·Yu, Jiahui, et al. "Coca: Contrastive captioners are image-text foundation models." arXiv preprint arXiv:2205.01917 (2022).

Considerations 1. What tasks to use? 2. What datasets to use?

1. What tasks to use?

- Classification (mostly evaluated by accuracy)
 - Visual Question Answering (DAQUAR, VQA, VQAv2, COCO-QA, FM-IQA, VG-<u>QA, Visual7W, GQA, TextVQA, DocVQA, ...</u>)
 - Visual Reasoning (<u>SHAPES, CLEVR, NLVR, VCR</u>)
 - Visual Entailment (SNLI-VE)
- Retrieval (mostly evaluated by recall)
 - Cross-Modal Retrieval (<u>COCO, Flickr30K, Recipe1M+, ...</u>)
 - Visual Grounding (<u>RefCOCO, CLEVR-Ref+, Flickr30K Entities, ...</u>)
- Generation (mostly evaluated by BLUE and CIDEr)
 - Image Captioning (<u>COCO, NoCaps, Multi30K</u>, ...)
 - Image Dense Captioning (<u>Visual Genome</u>)

Summary of VLP models' Performance

		Text Retrieval					Image Retrieval						
Model		Flic	kr30K	(1K)	MSC	COCO	(5K)	Flic	cr30K	(1K)	MSC	COCO	(5K)
	Params	@1	@5	@10	@1	@5	@10	@1	@5	@10	@1	@5	@10
ALBEF [†] [26]	163M	94.3	<u>99.4</u>	<u>99.8</u>	73.1	91.4	96.0	82.8	96.7	98.4	56.8	81.5	89.2
VinVL _{LARGE} [59]	452M	-	-	-	75.4	92.9	96.2	-	-	-	58.8	<u>83.5</u>	<u>90.3</u>
UNITER _{LARGE} [7]	371M	87.3	98.0	99.2	65.7	88.6	93.8	75.6	94.1	96.8	52.9	79.9	88.0
METER-Swin _{BASE} [29]	288M	92.4	99.0	99.5	<u>76.2</u>	<u>93.2</u>	<u>96.8</u>	79.0	95.6	98.0	54.9	81.4	89.3
PixelBERT [18]	144M	87.0	98.9	99.5	63.6	87.5	93.6	71.5	92.1	95.8	50.1	77.6	86.2
ViLT [22]	86M	83.5	96.7	98.6	61.5	86.3	92.7	64.4	88.7	93.8	42.7	72.9	83.1
VLC-Base (ours – 5.6M)	86M	89.2	99.2	99.8	71.3	91.2	95.8	72.4	93.4	96.5	50.7	78.9	88.0
VLC-Large (ours – 5.6M)	307M	94.4	99.6	99.9	76.7	94.5	97.3	<u>79.1</u>	<u>95.8</u>	<u>98.2</u>	<u>58.4</u>	84.0	91.1

Model		V	VQAv2		NLVR ²			
WIOdel	Params	test-dev	test-std	dev	test			
Supervised ImageNet Bounded Box								
ViLBERT [33]	274M	70.55	70.92	-	-			
LXMERT [48]	240M	72.42	72.54	74.90	74.50			
VisualBERT [27]	170M	70.80	71.00	67.4	67.0			
UNITER _{LARGE} [7]	371M	73.82	74.02	79.12	79.98			
OSCAR _{LARGE} [29]	371M	73.61	73.82	79.12	80.37			
VinVL _{LARGE} [†] [59] (5.6M)	452M	76.52	<u>76.60</u>	82.67	83.98			
Supervised ImageNet Classes								
METER-Swin _{BASE} [‡] [12]	288M	76.43	76.42	82.23	82.47			
ALBEF [26]	163M	74.54	74.70	80.24	80.50			
Visual Parsing [55]	180M	74.00	74.17	77.61	78.05			
PixelBERT [18]	144 M	74.45	74.55	76.5	77.2			
ViLT [22]	86M	71.26	-	75.70	76.13			
No supervised classes or bounding boxes								
VLC-Base (ours – 4M)	86M	72.98	73.03	77.04	78.51			
VLC-Base (ours – 5.6M)	86M	74.02	74.0	77.70	79.04			
VLC-Large (ours – 5.6M)	307M	76.95	77.02	<u>82.27</u>	<u>83.52</u>			
<i>Pre-trained or initialized with</i> $> 10M$ <i>data</i>								
METER-CLIP-ViT _{BASE} [12] (4M)	280M	77.68	77.64	82.33	83.05			
X-VLM [58] (16M)	216M	78.22	78.37	84.41	84.76			
BLIP [25] (129M)	252M	78.25	78.32	82.15	82.24			
OFA [50] (54M)	930M	82.0	82.0	-	-			
CoCa [57] (4.8B)	2.1B	82.3	82.3	86.1	87.0			

2. What datasets to		2021 ~ (after ViLT)						
use?		Name	#Image-Text Pairs					
2019 ~ 2021 (be	efore ViLT)	Localized Narratives	2M					
		English Wikipedia Image Text	6M					
Name #Image-Text Pai		Conceptual Captions 12M	12M					
0000	567K	Reddit Captions	12M					
SBU Captions	1M	YFCC 100M CLIP filtered	 30M					
Conceptual Captions	3M		400M					
Visual Genome	5.4M	COYO 700M	700M					
		LAION 5B	5B					

As a lot of details are omitted for the conciseness of the lecture, any questions are welcomed.

