NAVER AI's Research: Towards Strong and Robust Deep Models

Sangdoo Yun @ Naver Al Lab

7 Feb, 2023

Biography

- Sangdoo Yun
- <u>https://sangdooyun.github.io/</u>
- Academia
 - 2006~2010: SNU ECE B.S.
 - 2011~2013: SNU ECE M.S.
 - 2013~2017: SNU ECE Ph.D.
 - 2021~now: Adjunct professor @ SNU AI
- Industry
 - 2018~now: Research scientist @ Naver Al Lab

Leading Research group @ Naver Al Lab

- (Almost) everything about vision models

- (Almost) everything about vision models
- Model architecture: ReXNet[CVPR'21], PiT[ICCV'21]
- Optimizer: AdamP[ICLR'21]
- Robustness: ReBias[ICML'20], Shortcut learning[ICLR'22]
- Vision applications: Face, OCR[CVPR'19,ICCV'19,ECCV'22]

Skipped for this talk

[CVPR'19] Baek et al., Character Region Awareness for Text Detection
[ICCV'19] Baek et al., What Is Wrong with Scene Text Recognition Model Comparisons? Dataset and Model Analysis
[ICML'20] Bahng et al., Learning De-biased Representations with Biased Representations
[CVPR'21] Han et al., Rethinking Channel Dimensions for Efficient Model Design
[ICCV'21] Heo et al., Rethinking spatial dimensions of vision transformers
[ICLR'21] Heo et al., AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights
[ECCV'22] Kim et al., Donut: Document Understanding Transformer without OCR
[ICLR'22] Scimeca et al., Which shortcut cues will dnns choose? a study from the parameter-space perspective

- (Almost) everything about vision models
- How to "teach" vision models? *data* and *supervision*
 - Knowledge distillation [ICCV'19a]
 - Data augmentation [ICCV'19b, CVPR'22a]
 - Data re-labeling [CVPR'21]
 - Data compression [ICML'22a, ICML'22b]
 - Weak **supervision** [ICCV'21, CVPR'22b]

[ICCV'19a] Heo et al., A Comprehensive Overhaul of Feature Distillation

[ICCV'19b] Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

[CVPR'21] Yun et al., Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels

[ICCV'21] Kim et al., Normalization Matters in Weakly Supervised Object Localization

[CVPR'22a] Park et al., The Majority Can Help The Minority: Context-rich Minority Oversampling for Long-tailed Classification

[CVPR'22b] Lee et al., Weakly Supervised Semantic Segmentation using Out-of-Distribution Data

[ICML'22a] Kim et al., Dataset Condensation via Efficient Synthetic-Data Parameterization

[ICML'22b] Lee et al., Dataset Condensation with Contrastive Signals

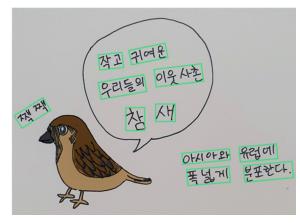
- (Almost) everything about vision models
- How to "teach" vision models? *data* and *supervision*
 - Knowledge distillation [ICCV'19a]
 - Data augmentation [ICCV'19b, CVPR'22a]
 - Data re-labeling [CVPR'21]
 - Data compression [ICML'22a, ICML'22b]
 - Weak supervision [ICCV'21, CVPR'22b]

[ICCV'19a] Heo et al., A Comprehensive Overhaul of Feature Distillation
[ICCV'19b] Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
[CVPR'21] Yun et al., Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
[ICCV'21] Kim et al., Normalization Matters in Weakly Supervised Object Localization
[CVPR'22a] Park et al., The Majority Can Help The Minority: Context-rich Minority Oversampling for Long-tailed Classification
[CVPR'22b] Lee et al., Weakly Supervised Semantic Segmentation using Out-of-Distribution Data
[ICML'22a] Kim et al., Dataset Condensation via Efficient Synthetic-Data Parameterization

Towards Strong and Robust Deep Models

Our Vision models for NAVER Services

- We supply stronger vision models (than public ones) for NAVER services



....

OCR Service Text detection Text recognition

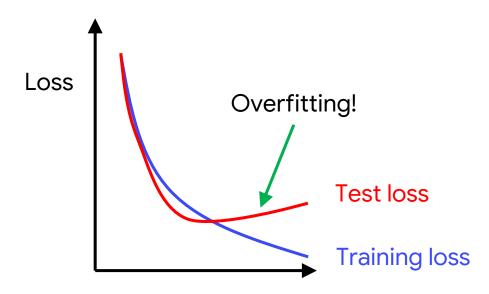
Face Service Face detection Face identification Spam Image Filtering Image Retrieval etc

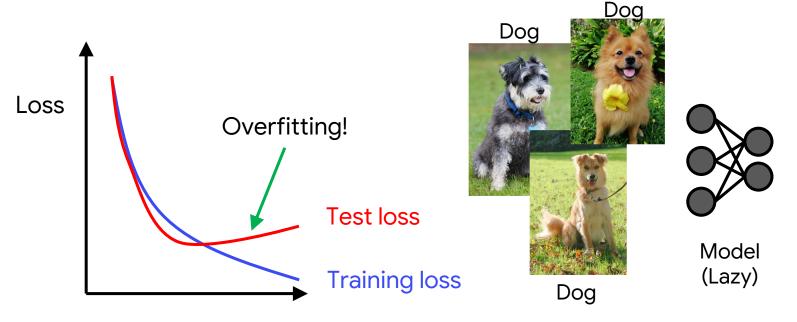
- Simple answers:

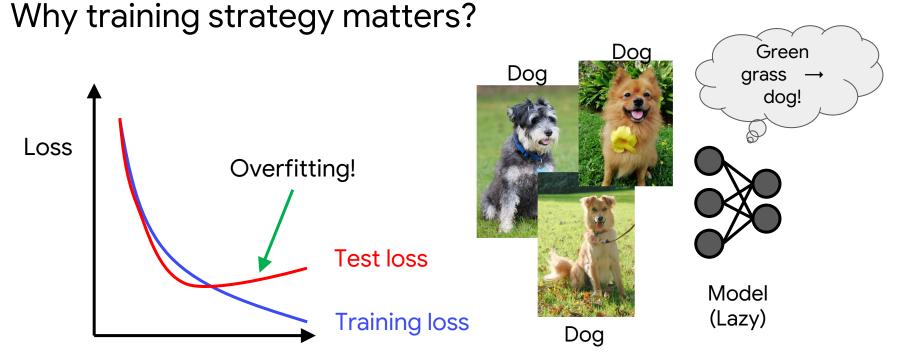
- Simple answers:
- 1) Collect more pre-training datasets
- 2) Use computationally heavier architecture
- They are not cost efficient.

- Simple answers:
- 1) Collect more pre-training datasets
- 2) Use computationally heavier architecture
- They are not cost efficient.
- Our research goal: obtain better model without extra cost!

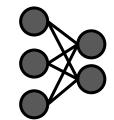
- Simple answers:
- 1) Collect more pre-training datasets
- → We use better training
 → Use computationally heavier architecture strategy
- They are not cost efficient.
- Our research goal: obtain better model without extra cost!



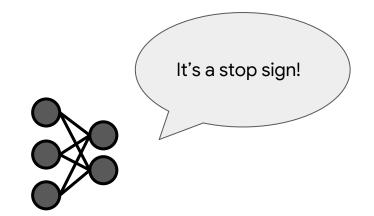




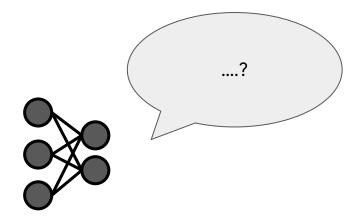
- Robustness



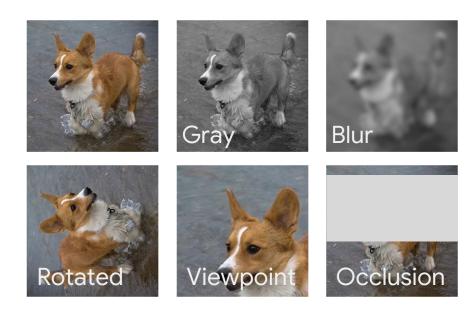
- Robustness



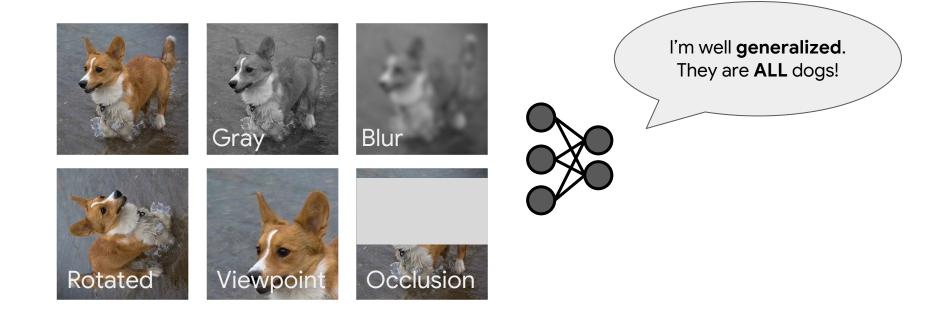
- Robustness



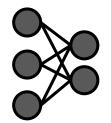
"Generalization"



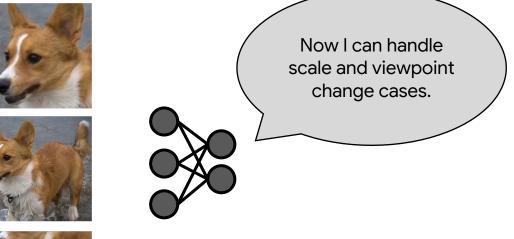
"Generalization"



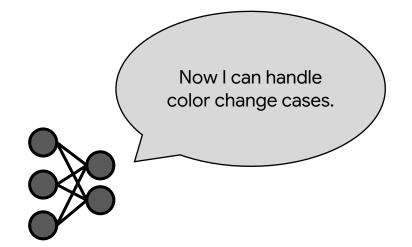
Horizontal flip augmentation



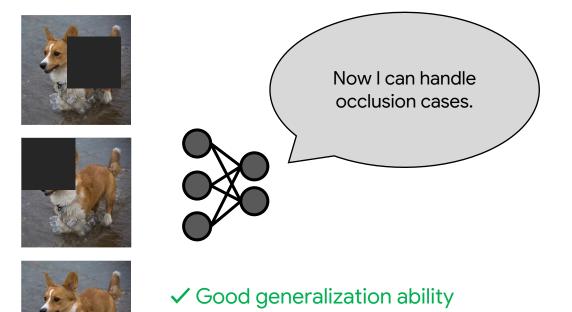
Random Crop augmentation



Color jittering / lighting augmentation



Random erasing^[1], Cutout^[2]



X Cannot utilize full image regions

Devries et al., "Improved regularization of convolutional neural networks with cutout", arXiv 2017.
 Zhong et al., "Random erasing data augmentation", arXiv 2017.

Data Augmentation: Mixup

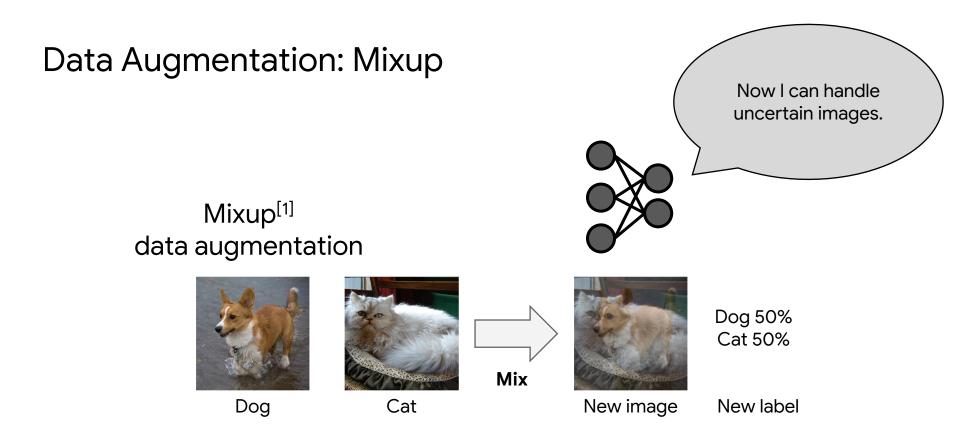
Mixup^[1] data augmentation

Dog

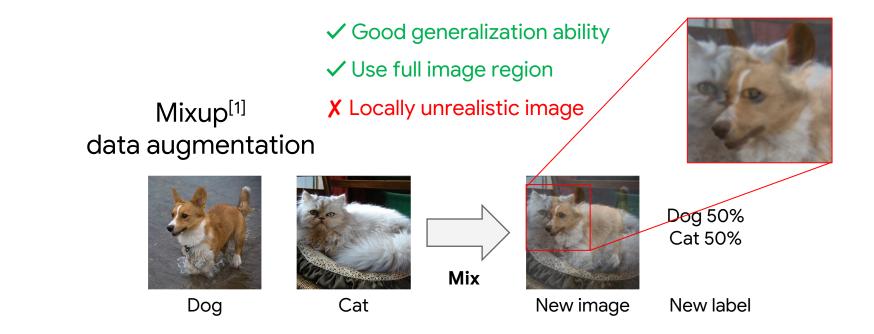
Cat

Data Augmentation: Mixup

Mixup^[1] data augmentation

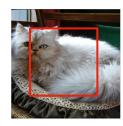


Data Augmentation: Mixup



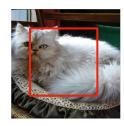
Cat 1.0

Dog 1.0



Cat 1.0

Dog 1.0



Cat 1.0

Dog 1.0

Dog 50% Cat 50%

New image

New label

We call this "CutMix" —

New image

New label

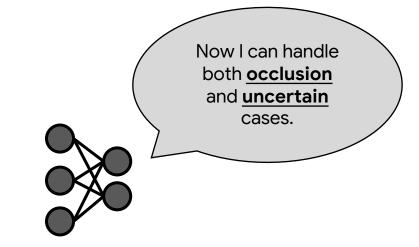
New image

Dog 75% Cat 25%

New label

...

- We call this "CutMix"



New image

Dog 50% Cat 50%

New label

Dog 75% Cat 25%

New label

...

ICCV'19 Oral Talk. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features.

Sangdoo Yun

Naver Allab

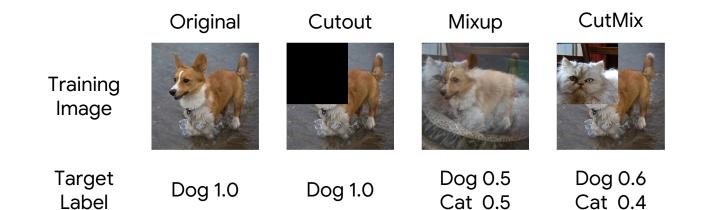
Dongyoon Han Naver Al Lab

Seong Joon Oh Sanghyuk Chun Naver Al Lab Naver Al Lab (Univ. Tübingen)

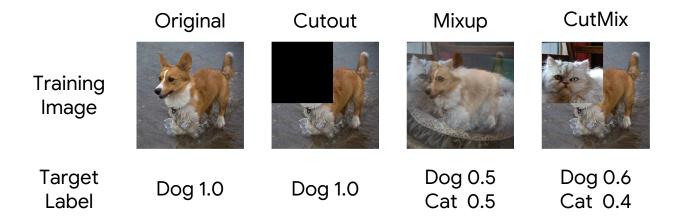
Junsuk Choe Naver Al Lab (Sogang Univ.)

Youngjoon Yoo Naver Al Lab

CutMix in a Nutshell



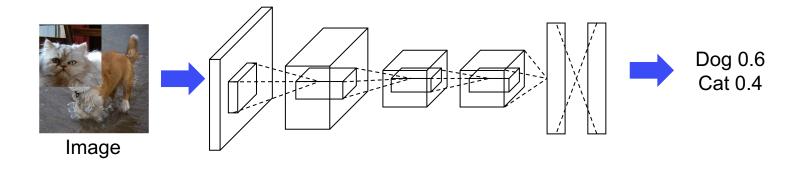
CutMix in a Nutshell



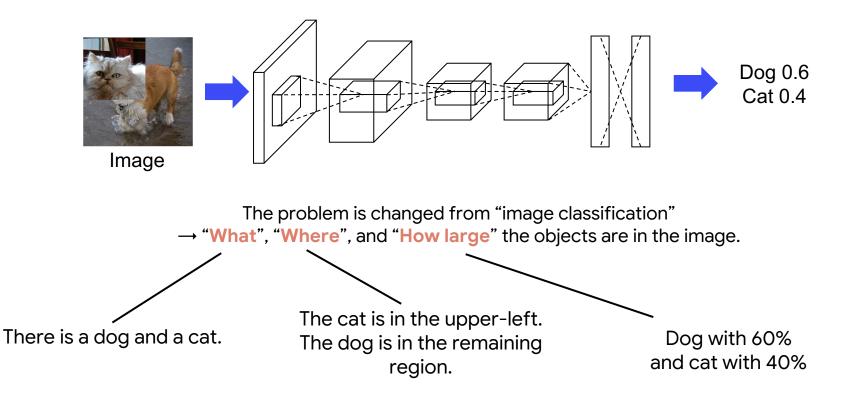
Unlike Cutout, CutMix uses full image region

- Unlike Mixup, CutMix makes realistic local image patches
- CutMix is simple: only 20 lines of PyTorch code

CutMix training strategy



CutMix training strategy



Heatmap visualization^[1]: Where does the model recognize the object?

[1] Zhou et al., Learning Deep Features for Discriminative Localization, CVPR 2016.

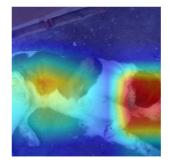
Heatmap visualization^[1]:

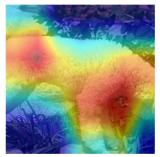
Where does the model recognize the object?

Heatmap of Poodle

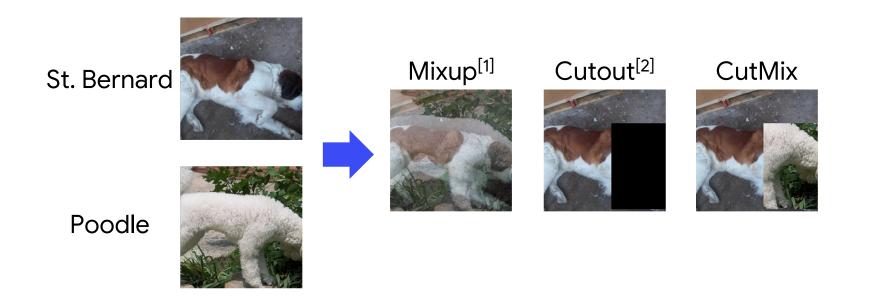
Heatmap of

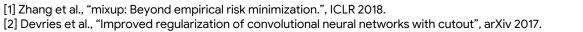
St. Bernard





[1] Zhou et al., Learning Deep Features for Discriminative Localization, CVPR 2016.

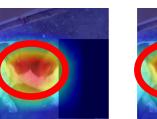




Cutout^[2]

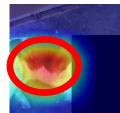
CutMix

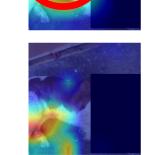
Heatmap of St. Bernard



Cutout^[2]

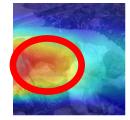
Heatmap of St. Bernard



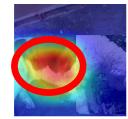


Mixup^[1]

Heatmap of St. Bernard

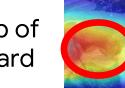


CutMix

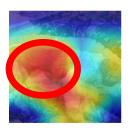


Mixup^[1]

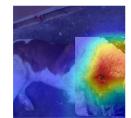
Heatmap of St. Bernard



Heatmap of Poodle



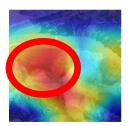
CutMix



Mixup^[1]

Heatmap of St. Bernard

Heatmap of Poodle



CutMix

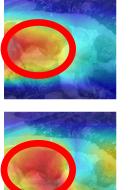
Mixup^[1]

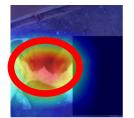
Cutout^[2]

CutMix

Heatmap of St. Bernard

Heatmap of Poodle



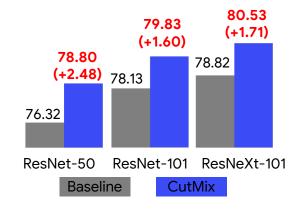


- ImageNet Classification

Model	Top-1 Acc (%)	Top-5 Acc (%)
ResNet-50 (Baseline)	76.3	93.0
ResNet-50 + Cutout (arXiv'17)	77.1	93.3
ResNet-50 + StochDepth (ECCV' 18)	77.5	93.7
ResNet-50 + Mixup (ICLR' 18)	77.4	93.6
ResNet-50 + DropBlock (NeurIPS'18)	78.1	94.0
ResNet-50 + Manifold Mixup (ICML'19)	77.5	93.8
ResNet-50 + AutoAugment (CVPR' 19)	77.6	93.8
ResNet-50 + CutMix	78.6	94.1
ResNet-152	78.3	94.1

- ImageNet Classification

Model	Top-1 Acc (%)	Top-5 Acc (%)
ResNet-50 (Baseline)	76.3	93.0
ResNet-50 + Cutout (arXiv'17)	77.1	93.3
ResNet-50 + StochDepth (ECCV' 18)	77.5	93.7
ResNet-50 + Mixup (ICLR' 18)	77.4	93.6
ResNet-50 + DropBlock (NeurIPS'18)	78.1	94.0
ResNet-50 + Manifold Mixup (ICML'19)	77.5	93.8
ResNet-50 + AutoAugment (CVPR' 19)	77.6	93.8
ResNet-50 + CutMix	78.6	94.1
ResNet-152	78.3	94.1



- ✓ Great improvement over baseline (+2%p).
- \checkmark Outperforming existing methods.
- ✓ ResNet50 + CutMix \approx ResNet152.

- Transfer learning to *object detection* and *image captioning.*

Backbone -	Pascal VOC Detection		MS-COCO Detection	Image Captioning	
	SSD	Faster-RCNN	Faster-RCNN	NIC	
Network	(mAP)	(mAP)	(mAP)	(BLEU-4)	
ResNet-50 (Baseline)	76.7 (+0.0)	75.6 (+0.0)	33.3 (+0.0)	22.9 (+0.0)	
Mixup-pretrained	76.6 (-0.1)	73.9 (-1.7)	34.2 (+0.9)	23.2 (+0.3)	
Cutout-pretrained	76.8 (+0.1)	75.0 (-0.6)	34.3 (+1.0)	24.0 (+1.1)	
CutMix-pretrained	77.6 (+0.9)	76.7 (+1.1)	35.2 (+1.9)	24.9 (+2.0)	

✓ Great improvement on MS-COCO (+2%p): ResNet-50 → ResNet-101

Choosing CutMix-pretrained model brings great performance gain

- Improved robustness performance

		Baseline	Mixup	Cutout	CutMix
Top-1 Acc (%)		8.2	24.4	11.5	31.0
Method	TNR at	t TPR 95%	AUROC	Detec	tion Acc.
Baseline	26	.3 (+0)	87.3 (+0)) 82.	0 (+0)
Mixup	11.8	8 (-14.5)	49.3 (-38.0) 60.9	(-21.0)
Cutout	18.	8 (-7.5)	68.7 (-18.6	5) 71.3	(-10.7)
CutMix	69.0	(+42.7)	94.4 (+7.1	l) 89. 1	(+7.1)

Is CutMix still useful?

9 2019	I
)	9 2019

A ConvNet for the 2020s

Zhuang Liu^{1,2*} Hanzi Mao¹ Chao-Yuan Wu¹ Christoph Feichtenhofer¹ Trevor Darrell² Saining Xie^{1†} ¹Facebook AI Research (FAIR) ²UC Berkeley Code: https://github.com/facebookresearch/ConvNeXt

epochs from the original 90 epochs for ResNets. We use the AdamW optimizer [46], data augmentation techniques such as Mixup [90], Cutmix [89], RandAugment [14], Random Erasing [91], and regularization schemes including Stochastic Depth [36] and Label Smoothing [69]. The complete set

ConvNext CVPR 2022

Training data-efficient image transformers & distillation through attention

Hugo Touvron^{*,†} Matthieu Cord[†] Matthijs Douze^{*} Francisco Massa^{*} Alexandre Sablayrolles^{*} Hervé Jégou^{*}

*Facebook AI [†]Sorbonne University

were first adopted in the training procedure by Wightman [55]. Regularization like Mixup [60] and Cutmix [59] improve performance. We also use repeated

Vision Transformer ICML 2021

Is CutMix still useful? Yes :)

TITLE	CITED BY	YEAR
Cutmix: Regularization strategy to train strong classifiers with localizable features S Yun, D Han, SJ Oh, S Chun, J Choe, Y Yoo Proceedings of the IEEE/CVF international conference on computer vision	2209	2019

A ConvNet for the 2020s

Zhuang Liu^{1,2*} Hanzi Mao¹ Chao-Yuan Wu¹ Christoph Feichtenhofer¹ Trevor Darrell² Saining Xie^{1†} ¹Facebook AI Research (FAIR) ²UC Berkeley Code: https://github.com/facebookresearch/ConvNeXt

epochs from the original 90 epochs for ResNets. We use the AdamW optimizer [46], data augmentation techniques such as Mixup [90], Cutmix [89], RandAugment [14], Random Erasing [91], and regularization schemes including Stochastic Depth [36] and Label Smoothing [69]. The complete set

ConvNext CVPR 2022

Training data-efficient image transformers & distillation through attention

Hugo Touvron^{*,†} Matthieu Cord[†] Matthijs Douze^{*} Francisco Massa^{*} Alexandre Sablayrolles^{*} Hervé Jégou^{*}

*Facebook AI [†]Sorbonne University

were first adopted in the training procedure by Wightman [55]. Regularization like Mixup [60] and Cutmix [59] improve performance. We also use repeated

Vision Transformer ICML 2021

Further studies

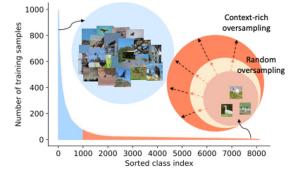
Video recognition [1]

Bird (0.2) Dog (0.3) Fish (0.5)

Better mixing strategy beyond random [2,3]

Puzzle Mix (full)

Token augmentation in ViT [5]



CutMix for imbalanced classification [4]

x^A	They will find little interest in this poor film .
y^A	negative
x^B	It comes as a touching , transcendent love story .
y^B	positive

 \tilde{x} They will find little interest transcendent love poor film.

 \tilde{y} 20% positive, 80% negative

Text classification in NLP [6]

- [1] Yun et al., VideoMix: Rethinking Data Augmentation for Video Classification, arXiv 2021
- [2] Kim et al., Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup, ICML 2020
- [3] Kim et al., Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity, ICLR 2021
- [4] Park et al., The Majority Can Help The Minority: Context-rich Minority Oversampling for Long-tailed Classification, CVPR 2022.
- [5] Jiang et al., All Tokens Matter: Token Labeling for Training Better Vision Transformers, NuerIPS 2021.
- [6] Yoon et al., SSMix: Saliency-Based Span Mixup for Text Classification, Findings of ACL 2021.

Summary of CutMix

- CutMix makes robust and strong vision models
- Visit our website (codes & models): <u>https://github.com/ClovaAl/CutMix-</u> <u>PyTorch</u>

"ImageNet" [1][2] (ILSVRC 2012)

- More than 1M images for 1,000 object categories
- However, their annotations are ...

"monastery"

"Norwich terrier"

"stage"

From ImageNet to Image Classification: Contextualizing Progress on Benchmarks, ICML 2020. https://slideslive.com/38928533/from-imagenet-to-image-classification-contextualizing-progress-on-benchmarks

J. Deng, et al., ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.
 Olga Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

"ImageNet" [1][2] (ILSVRC 2012)

- More than 1M images for 1,000 object categories
- However, their annotations are ...

"monastery" "church"

"Norwich terrier" "Norfolk terrier" "stage"
"acoustic guitar"

From ImageNet to Image Classification: Contextualizing Progress on Benchmarks, ICML 2020. https://slideslive.com/38928533/from-imagenet-to-image-classification-contextualizing-progress-on-benchmarks

J. Deng, et al., ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.
 Olga Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

"ImageNet" (ILSVRC 2012)

- More than 1M images for 1,000 object categories
- However, their annotations are ...

ImageNet label: desk

Contextualizing Machine Accuracy on ImageNet, ICML 2020. https://slideslive.com/38928496/contextualizing-machine-accuracy-on-imagenet

ImageNet's Labeling issues

- Previous works [1,2,3] focus on validation set (50,000 images)
- Re-annotates multi-labels using human labor

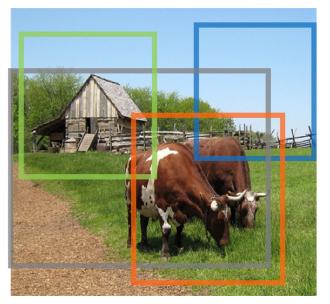
[1] From ImageNet to Image Classification: Contextualizing Progress on Benchmarks, ICML 2020.

[2] Contextualizing Machine Accuracy on ImageNet, ICML 2020.

[3] Are we done with ImageNet?, ArXiv 2020.

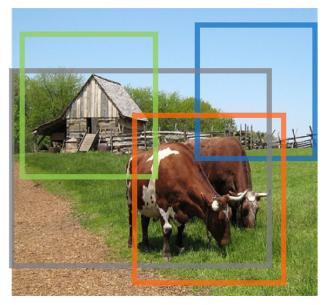
- How about training images? (1,280,000 images) Can we *re-label* them?
- If we solve the labeling problems on training images, we might enhance models accuracy and robustness?

- During training, "Random Crop" intensifies the label noises



ImageNet Label: ox

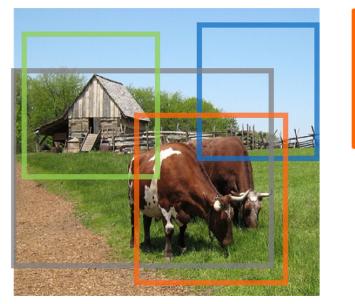
- During training, "Random Crop" intensifies the label noises



ox 1.00 ox 1.00 ox 1.00 ox 1.00

ImageNet Label: ox

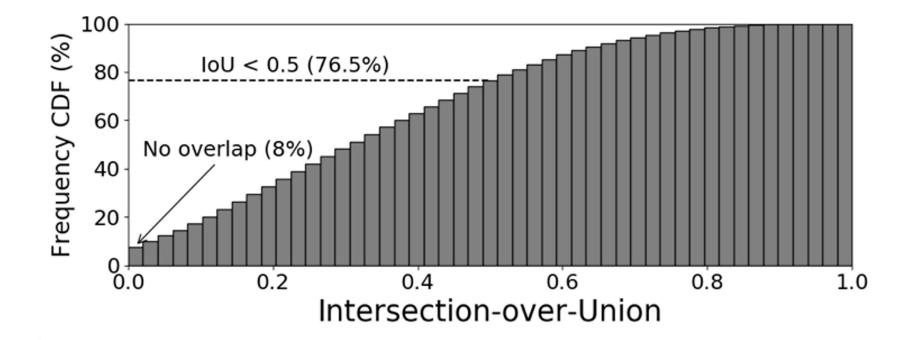
- During training, "Random Crop" intensifies the label noises



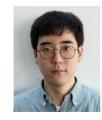
ox 1.00 ox 1.00 ox 1.00 ox 1.00 fence 0.33 ox 1.00 barn 1.00 barn 0.51 ox 0.42 ox 0.14

ImageNet Label: ox

Random crop analysis



CVPR'21 Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels



Sangdoo Yun Naver Al Lab Seong (Univ.

Seong Joon Oh Naver Al Lab (Univ. Tübingen)

Byeongho Heo Naver Al Lab

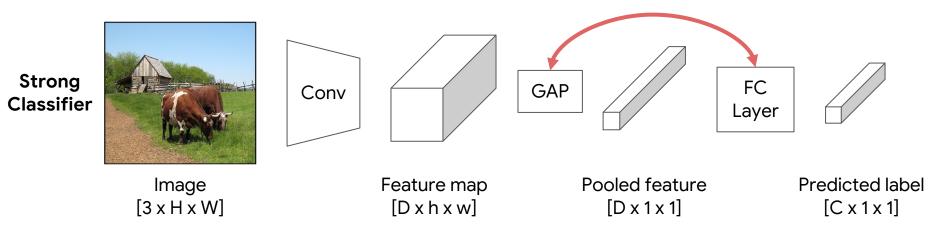
Dongyoon Han Naver Al Lab

Junsuk Choe Naver Al Lab (Sogang Univ.)

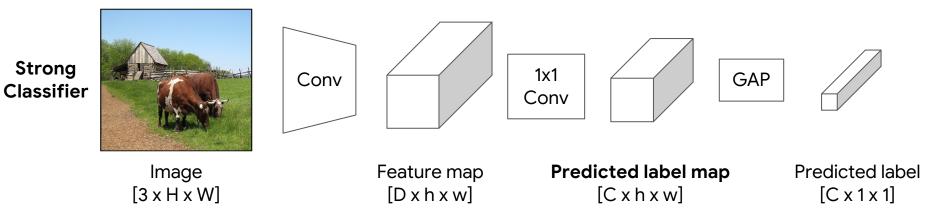
Sanghyuk Chun Naver Al Lab

- Our goal: (1) Multi-label, (2) Localized label
- Re-labeling using "machine annotator" (or, pseudo-labeling)
- Machine annotator: state-of-the-art classifier trained with extra source data

- Our goal: (1) Multi-label, (2) Localized label
- Re-labeling using "machine annotator" (or, pseudo-labeling)
- Machine annotator: state-of-the-art classifier trained with extra source data

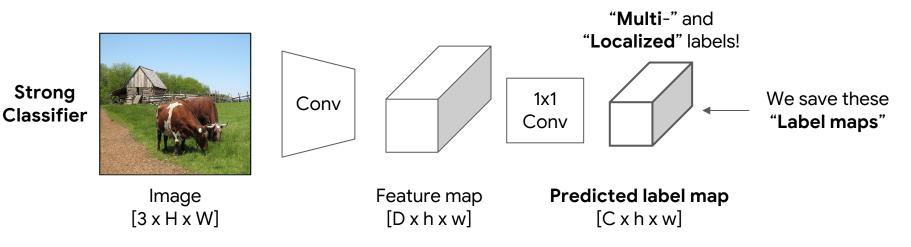


- Our goal: (1) Multi-label, (2) Localized label
- Re-labeling using "machine annotator" (or, pseudo-labeling)
- Machine annotator: state-of-the-art classifier trained with extra source data



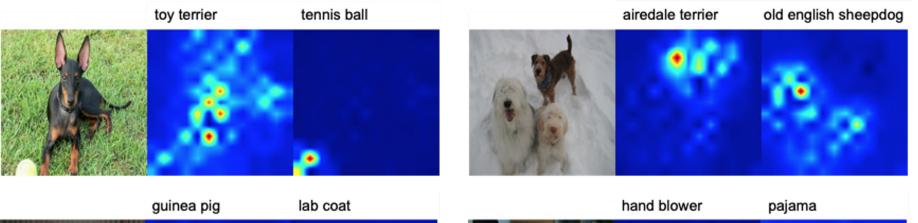
Long et al., Fully convolutional networks for semantic segmentation. CVPR 2015. Zhou et al.,Learning deep features for discriminative localization, CVPR 2016.

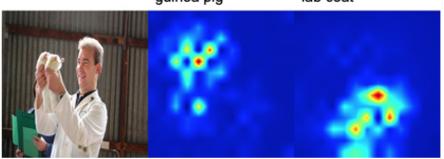
- Our goal: (1) Multi-label, (2) Localized label
- Re-labeling using "machine annotator" (or, pseudo-labeling)
- Machine annotator: state-of-the-art classifier trained with extra source data

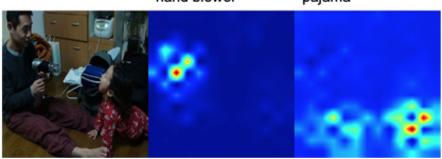


Long et al., Fully convolutional networks for semantic segmentation. CVPR 2015. Zhou et al.,Learning deep features for discriminative localization, CVPR 2016.

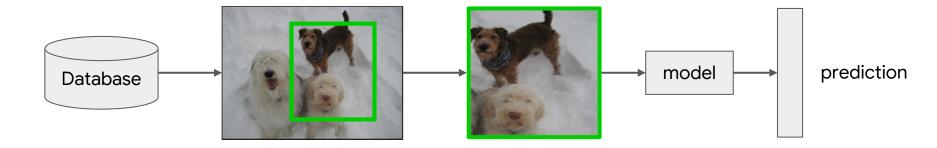
Label Map Examples



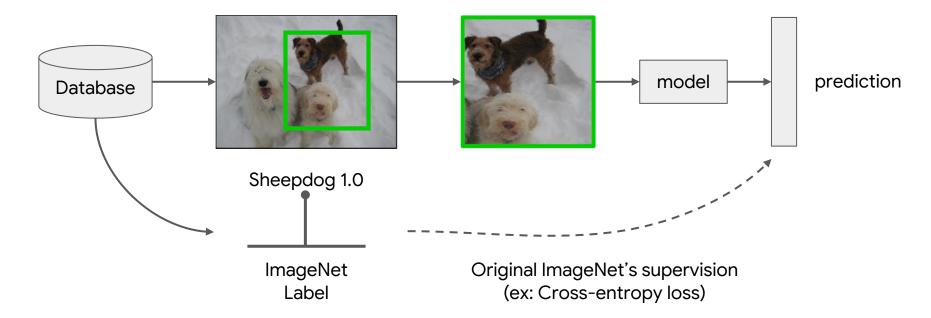




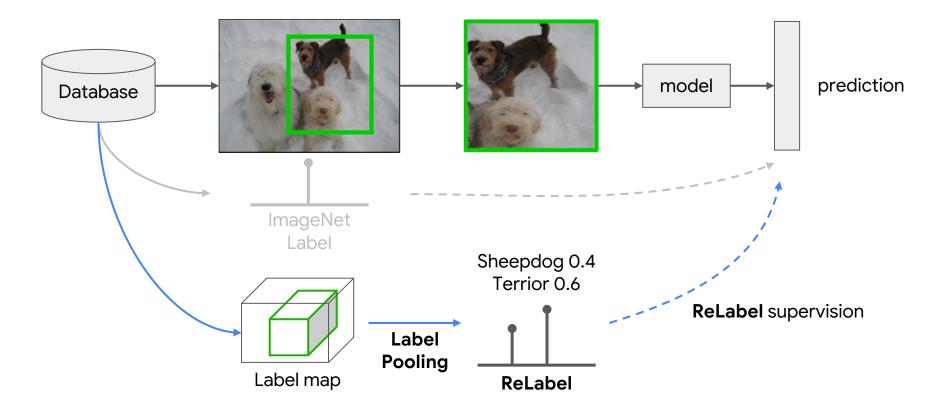
How to train?



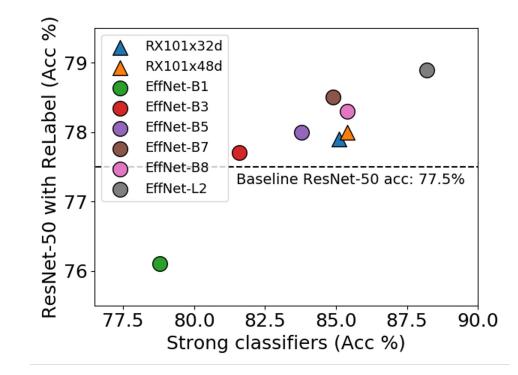
How to train? - Original supervision



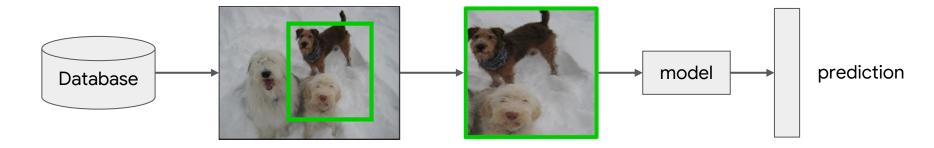
How to train? - ReLabel supervision



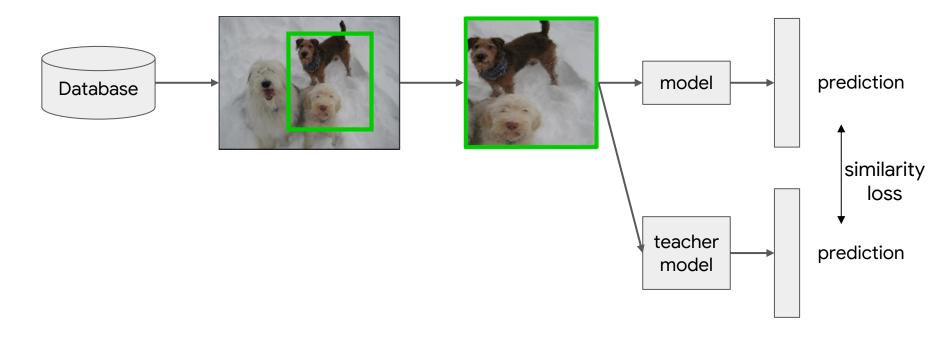
Re-labeling ImageNet: Analysis



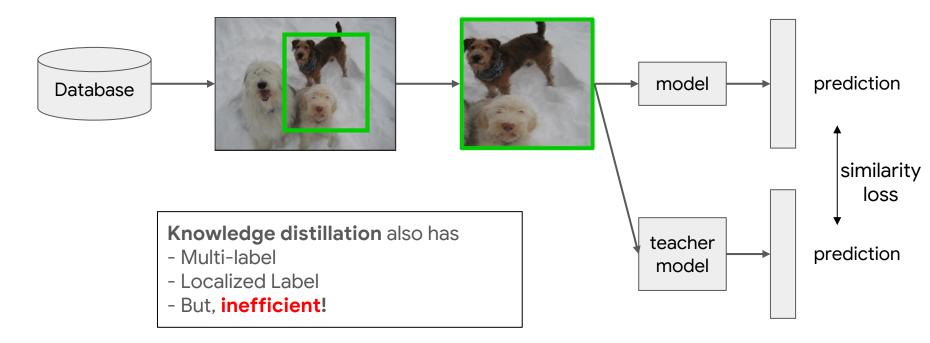
Comparison with knowledge distillation



Comparison with knowledge distillation

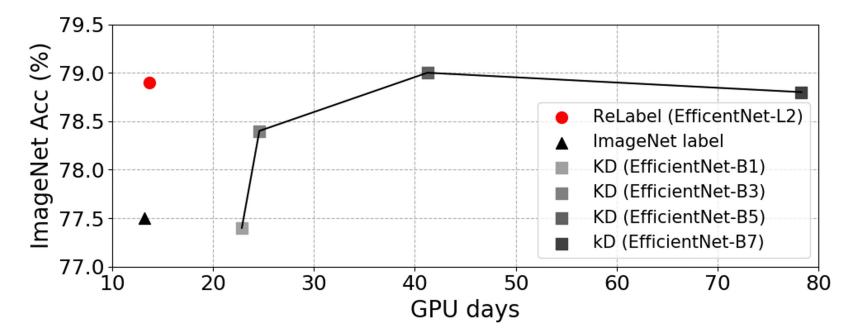


Comparison with knowledge distillation



Re-labeling ImageNet: Analysis

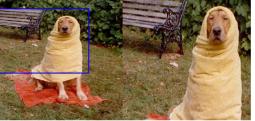
- Comparison with knowledge distillation



ImageNet label: bath towel ReLabel: golden retriever(0.55) bath towel(0.45) ImageNet label: Border collie ReLabel: sliding door(0.61) Border collie(0.39)

ImageNet label: Saint Bernard ReLabel: television(0.56)

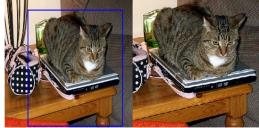
home theater(0.44)



ImageNet label: laptop ReLabel: tiger cat(0.68) laptop(0.32)

ImageNet label: ox ReLabel: worm fence(0.59) ox(0.41)

ImageNet label: laptop ReLabel: wine bottle(0.64) modem(0.36)



ImageNet label: kite ReLabel: valley(0.55) broccoli(0.45)

- Results on ImageNet benchmark (single, multi-label evaluation)

		ImageNet	ImageNetV2 [34]	ReaL [2]	Shankar et al. [37]
Network	Supervision	single-label	single-label	multi-label	multi-label
ResNet-50	Original	77.5	79.0	83.6	85.3
ResNet-50	Label smoothing (ϵ =0.1) [43]	78.0	79.5	84.0	84.7
ResNet-50	Label cleaning [2]	78.1	79.1	83.6	85.2
ResNet-50	ReLabel	78.9	80.5	85.0	86.1

- Results on ImageNet benchmark (various architectures)

	Resources		Supervision		
Architecture	Params	Flops	Vanilla	ReLabel	
ResNet-18	11.7 M	1.8 B	71.7	72.5 (+0.8)	
ResNet-50	25.6M	3.8B	77.5	78.9 (+1.4)	
ResNet-101	44.7M	7.6B	78.1	80.7 (+2.6)	
EfficientNet-B0	5.3M	0.4B	77.4	78.0 (+0.6)	
EfficientNet-B1	7.8M	0.7B	79.2	80.3 (+1.1)	
EfficientNet-B2	9.2M	1.0 B	80.3	81.0 (+0.7)	
EfficientNet-B3	12.2M	1.8B	81.7	82.5 (+0.8)	

- Results on ImageNet benchmark (towards SOTA)

Model	ImageNet top1 (%)
ResNet-50	77.5
+ ReLabel	78.9 (+1.4)
+ ReLabel + CutMix	80.2 (+2.7)
+ ReLabel + CutMix + Extra data	81.2 (+3.7)
ResNet-101	78.1
+ ReLabel	80.7 (+2.6)
+ ReLabel + CutMix	81.6 (+3.5)

- Robustness

Models	FGSM	ImageNet-A	ImageNet-C	BCG
ResNet-50	25.7	4.9	27.9	25.9
+ ReLabel	31.3 (+5.6)	7.1 (+2.2)	28.1 (+0.2)	34.6 (+8.7)
+ CutMix	42.4 (+16.7)	11.4 (+6.5)	47.5 (+19.6)	34.1 (+8.2)
+ Extra data	45.0 (+19.3)	24.8 (+19.9)	54.2 (+26.3)	36.0 (+10.1)

- Transfer learning

	Food-101 [3]	Stanford Cars [24]	DTD [6]	FGVC Aircraft [31]	Oxford Pets [33]
ResNet-50 (Baseline)	87.98	92.64	75.43	85.09	93.92
ResNet-50 (ReLabel-trained)	88.12	92.73	75.74	88.89	94.28

	Faster-RCNN	Mask-RCNN	
	bbox AP	bbox AP	mask AP
ResNet-50 (Baseline)	37.7	38.5	34.7
ResNet-50 (ReLabel-trained)	38.2	39.1	35.2

Summary of ReLabel

- We propose a re-labeling strategy, ReLabel for ImageNet training data.
- ReLabel improves the model performance with 3% extra computation.
- Our re-labeled ImageNet, models, and codes: <u>https://github.com/naver-ai/relabel_imagenet</u>.

Thank you