Towards Reliable Machine Learning: Challenges, Examples, Solutions

Sanghyuk Chun Lead Research Scientist at NAVER AI Lab

Part 1: Machine Learning Reliability: Challenges and Examples

Machine Learning (ML) opens a new stage of automation.

https://towardsdatascience.com/some-experiments-using-github-copilot-with-python-90f8065fb72e

Machine Learning (ML) opens a new stage of automation.

Line tracing for self-driving cars

Semantic segmentation for self-driving cars

https://github.com/commaai/research

https://studentsxstudents.com/using-semantic-segmentation-to-give-a-self-driving-car-the-ability-to-see-6c97425ec562

• Just "memorizing" training dataset rather than "thinking" about the given

comment

zen2.pv

https://docs.github.com/en/github/copilot/research-recitation

Google search for "Tench" (class 0)

fishandgame.org.nz

Tench | NatureSpot naturespot.org.uk

A New World Record Tench? | Anglin... anglinglines.com

Tench - Description, Habitat, Image ... animals.net

Top Ten Tench Fishing ... linesonthewater.anglingtr...

tench bream pit was this 7lb tench ... dynamitebaits.com

Big Tench Fishing: The Tale of a Tench ... badangling.com

An Irish record-breaking tench - Off ... offthescaleangling.ie

The lift method for tench fishing ... anglingtimes.co.uk

anglingtimes.co.uk

Tench - Description, Habitat, Image ... animals.net

Tench Fishing rigs | Maggot feeder rig ... anglingtimes.co.uk

Tips for Springtime Tench Fishing ... fishingty.com

It's time for a big tench! - Angling Ti... anglingtimes.co.uk

tench fishing spod mix ... dynamitebaits.com

General Baits For Tench Fishing - Tench ... sunlinefishing.com

Tench | fish | Britannica britannica.com

The Tench - facts and fables - Aqualog.de agualog.de

Wieland et al., "Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet", ICLR 2019

"Finger bias"

<u>Wieland et al., "Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet", ICLR 2019</u> <u>https://medium.com/bethgelab/neural-networks-seem-to-follow-a-puzzlingly-simple-strategy-to-classify-images-f4229317261f</u>

Ground truth: Spices

Phillipines, 262 \$/month Ground truth: Spices

Azure: bottle, beer, counter, drink, open Clarifai: container, food, bottle, drink, stock Google: product, yellow, drink, bottle, plastic bottle Amazon: beverage, beer, alcohol, drink, bottle Watson: food, larder food supply, pantry, condiment, food seasoning Tencent: condiment, sauce, flavorer, catsup, hot sauce

Spectra Spectra States Stat

USA, 4559 \$/month

Azure: bottle, wall, counter, food Clarifai: container, food, can, medicine, stock Google: seasoning, seasoned salt, ingredient, spice, spice rack Amazon: shelf, tin, pantry, furniture, aluminium Watson: tin, food, pantry, paint, can Tencent: spice rack, chili sauce, condiment, canned food, rack

de Vries, Terrance, et al. "Does object recognition work for everyone?." CVPR Workshops. 2019.

ML models often rely on "easy-to-learn shortcuts" without an understanding of the problem itself.

VQA models answer the question without looking at the image

Cadene, et al. "RUBi: Reducing Unimodal Biases for Visual Question Answering", NeurIPS 2019

"Shortcut learning" problem?

 When a model does not make a decision based on "desired" features (considering both question and image – color in this case), but "undesired" features (ignoring image), there exists a shortcut learning problem.

VQA models answer the question without looking at the image

Cadene, et al. "RUBi: Reducing Unimodal Biases for Visual Question Answering", NeurIPS 2019

- Example: An automatic job interview
- A machine determines "Openness", "Conscientiousness", "Extraversion", "Agreeableness", and "Neuroticism" of interviewees.
- Is the machine truly focusing on how the interviewee answers the question?
- We expect a machine interviewer to be:
 - Fast and Accurate
 - Inexpensive and Convenient
 - Reproducible
 - ... and Objective (not biased)

- Is the machine truly focusing on how the interviewee answers the question?
- <u>This article</u> ("Objective or Biased" by Bayerischer Rundfunk – German Public Broadcasting) investigates the question by hiring a professional actress and letting the actress act an interviewee.
- If the machine truly understands the answers, different appearances do not affect to the results.

• When the actress acts the same script and the same action but with different appearance (with glasses or with headscarf), the predictions vary significantly!

• Similarly, the predictions vary significantly with the same script and the same action but with different backgrounds (with picture, with bookshelf).

• Even for different brightness settings!

Recap: the basic of machine learning.

Data X Model Model prediction $f_{\theta}(X)$ parameter θ $\bullet \bullet \bullet$ "Santa Claus" !=

Fix the model parameters to make the prediction correct

Label Y

"Cat"

Recap: the basic of machine learning.

Data X Model Model Label Y prediction $f_{\theta}(X)$ parameter θ $\bullet \bullet \bullet$ "Cat" "Cat" 1

There is no update if the prediction is correct

When does shortcut learning happen?

Every car in the dataset is on roads

Every boat in the dataset is on water

When does shortcut learning happen?

Car on water

Boat on road

When does shortcut learning happen?

A model only attends on **"easy shortcut"** (water pattern), but it actually does not understand the problem

There is no update if the prediction is correct

ICLR'22

Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective

Luca Scimeca*, Seong Joon Oh*, <u>Sanghyuk Chun</u>, Michael Poli, Sangdoo Yun NAVER AI Lab

ML models have more preferred features.

- Assume a toy example when every training sample with ...
 - class "1" is small / red / circle
 - class "2" is medium / green / triangle
 - class "3" is large / blue / square

How to predict "small (1)" "blue (3)" "triangle (2)"?

Naive learning strategy leads to shortcut learning

There exist "preferred cues" by ML models

Trained on "100% correlated" data

Tested on "uncorrelated" data

There exist "preferred cues" by ML models

Tested on "uncorrelated" data

ViT

Conclusion of Part 1

- Shortcut learning problem is a realistic challenge
- Data collection can be a problem, but don't blame dataset collection process too much. We have to focus on the algorithms as well!
- ML models have specific preferred cues (e.g., color): A model trained by simple empirical risk minimization (ERM) will be biased toward specific cues with high probability.
- We need a new paradigm for mitigating shortcut learning problem.

Part 2: Attempts to Mitigate Shortcut Learning

How can we solve shortcut learning problem?

- Data collection should be considered and designed to *avoid undesirable dataset biases* in the dataset (e.g., "lung pics and hospital tokens")
- We may need additional annotation process to collect *"bias labels of concern"* (e.g., ethical labels such as ethnicity, gender or income level)
- Algorithm should reflect the task itself and should preferably be *unbiased* sometimes we need a different decision process, e.g., stochastic one
- Evaluation protocol should consider the *real-world deployment scenario* such as distribution shifts, not only "in-distributed scenario".
- Human should be considered in the machine learning model development pipeline loop, i.e., *human-in-the-loop* is required

If we have "bias labels" then...

Bias label: "road"

If we have "bias labels" then...

These images have "road" shortcut labels

Cool, now I can see what is the "road" pattern! I will ignore them.

We have to start from dataset construction.

- Data collection should be considered and designed to *avoid undesirable dataset biases* in the dataset (e.g., collecting more data samples for "boat on road" or "minority")
- We also need additional annotation process to collect "bias labels of concern" (e.g., "road" / "water" labels or sensitive attributes such as gender, ethnicity)

Issue 1: Data collection itself is often non-trivial.

- Data collection should be considered and designed to *avoid undesirable dataset biases* in the dataset (e.g., collecting more data samples for "boat on road" or "minority")
- We also need additional annotation process to collect "bias labels of concern" (e.g., "road" / "water" labels or sensitive attributes such as gender, ethnicity)

Issue 1: Data collection itself is often non-trivial.

• Collecting "uncommon" data points would be very expensive or even impossible.

Issue 2: Bias label annotations could be expensive.

- Data collection should be considered and designed to avoid undesirable dataset biases in the dataset (e.g., collecting more data samples for "boat on road" or "minority")
- We also need additional annotation process to collect "bias labels of concern" (e.g., "road" / "water" labels or sensitive attributes such as gender, ethnicity)

Solution: Estimating bias labels with a few labeled samples.

Bias label: "road"

Bias label: "water"

Bias label: "water"

Bias label: "road"

Solution: Estimating bias labels with a few labeled samples.

- Estimating bias labels of the remaining data samples using the bias label estimator
- Now, we can apply the existing methods utilizing the estimated bias labels

Nam, et al. "Spread Spurious Attribute: Improving Worst-group Accuracy with Spurious Attribute Estimation" ICLR 2022 Jung, et al. "Learning Fair Classifiers with Partially Annotated Group Labels" CVPR 2022

Issue 3: Bias labels are not always easily determinable.

- Data collection should be considered and designed to avoid undesirable dataset biases in the dataset (e.g., collecting more data samples for "boat on road" or "minority")
- We also need additional annotation process to collect "bias labels of concern" (e.g., "road" / "water" labels or sensitive attributes such as gender, ethnicity)

Issue 3: Bias labels are not always easily determinable.

Sometimes, shortcut bias labels are not able to be "annotated", e.g., how to annotate the "text-bias" in VQA as "multinomial" values?

Solution: De-biasing with biased models.

• If we can make a biased model, we can avoid shortcut learning problem by utilizing the biased model.

Solution: De-biasing with biased models.

• If we can make a biased model, we can avoid shortcut learning problem by utilizing the biased model.

Two questions.

- 1. How to make a biased model?
- 2. How to encode "be different" ?

Two questions.

- 1. How to make a biased model?
- 2. How to encode "be different" ? (out-of-context for today's talk)

If we know how to make a perfectly biased model

- For certain types of biases, we can make a perfectly biased model.
- Example 1: VQA (Visual-question answering)

Cadene, et al. "RUBi: Reducing Unimodal Biases for Visual Question Answering", NeurIPS 2019 Clark, et al. "Don't take the easy way out: ensemble based methods for avoiding known dataset biases", EMNLP 2019 Clark, et al. "Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles", EMNLP findings 2020

If we know how to make a perfectly biased model

- For certain types of biases, we can make a perfectly biased model.
- Example 2: Image textures / colors

Figure 2: Introduction of Neural Gray-level Co-occurrence Matrix (NGLCM) and HEX.

If we know when a model is biased

• If we know that a biased model focuses on "local areas" than "global areas"

If we know when a model is biased

• If we know that "shortcut biases" are easy-to-learn compared to the "desired features"

How can we evaluate if a model successfully avoids SL?

- It depends on how we make benchmark datasets (i.e., training and test sets)
- If we want to check whether a model performs well under significant distribution shifts (e.g., every car and boat is in the sky), then we have to test **"domain generalization"** benchmark.
 - These type of test sets are often called as "out-of-distributed" datasets.
- If we want to check whether a model can perfectly ignore shortcut biases even under the severely biased training dataset, "cross-bias generalization" benchmark would be helpful.

Bahng, et al. "Learning De-biased Representations with Biased Representations", ICML 2020

Domain generalization benchmark.

- It depends on how we make benchmark datasets (i.e., training and test sets)
- If we want to check whether a model performs well under significant distribution shifts (e.g., every car and boat is in the sky), then we have to test "domain generalization" benchmark.
 - These type of test sets are often called as "out-of-distributed" datasets.
- If we want to check whether a model can perfectly ignore shortcut biases even under the severely biased training dataset, "cross-bias generalization" benchmark would be helpful.

Bahng, et al. "Learning De-biased Representations with Biased Representations", ICML 2020

Domain generalization benchmark.

• "Domain generalization" aims to solve the generalization problem under the unseen distribution shifts.

https://www.researchgate.net/figure/Examples-from-the-dataset-PACS-1-for-domain-generalization-The-training-set-is_fig1_349787277

Domain generalization benchmark.

• When we evaluate algorithms on multiple benchmarks under a fair evaluation protocol, theoretically well-founded methods often perform worse than the baseline (ERM)

Dataset	Domair	ıs				
Colored MNIST	+90% 3 (degree of co	+80% 3 rrelation between	-90%	1)		
Rotated MNIST	° 9	٩	30°	45°	60°	75°
VLCS	Caltech101	LabelMe	SUN09	VOC2007		
PACS	Art	Cartoon	Photo	Sketch		
Office-Home	Art	Clipart	Product	Photo		
Terra Incognita	L100 (camera trap	L38 location)	L43	L46		
DomainNet	Clipart	Infographic	Painting	QuickDraw	Photo	Sketch

Algorithm	PACS	VLCS	OfficeHome	TerraInc	DomainNet	Avg.
MMD [†] [12]	84.7±0.5	$77.5 {\pm} 0.9$	66.3 ± 0.1	42.2 ± 1.6	$23.4 {\pm} 9.5$	58.8
Mixstyle [‡] [28]	85.2 ± 0.3	77.9 ± 0.5	60.4 ± 0.3	44.0 ± 0.7	34.0 ± 0.1	60.3
GroupDRO [†] [24]	84.4 ± 0.8	$76.7{\pm}0.6$	$66.0 {\pm} 0.7$	$43.2 {\pm} 1.1$	$33.3{\pm}0.2$	60.7
IRM [†] [22]	$83.5{\pm}0.8$	$78.5{\scriptstyle \pm 0.5}$	64.3 ± 2.2	47.6 ± 0.8	$33.9 {\pm} 2.8$	61.6
ARM^{\dagger} [21]	85.1 ± 0.4	77.6 ± 0.3	64.8 ± 0.3	$45.5{\pm}0.3$	$35.5{\pm}0.2$	61.7
VREx [†] [23]	84.9 ± 0.6	$78.3{\scriptstyle \pm 0.2}$	66.4 ± 0.6	$46.4{\scriptstyle \pm 0.6}$	$33.6{\pm}2.9$	61.9
CDANN [†] [15]	82.6 ± 0.9	$77.5{\scriptstyle \pm 0.1}$	65.8 ± 1.3	$45.8{\scriptstyle\pm1.6}$	$38.3{\pm}0.3$	62.0
DANN [†] [11]	83.6±0.4	$78.6{\scriptstyle\pm0.4}$	$65.9{\pm}0.6$	$46.7{\scriptstyle\pm0.5}$	$38.3{\pm}0.1$	62.6
RSC [†] [52]	85.2±0.9	$77.1{\scriptstyle \pm 0.5}$	$65.5{\pm}0.9$	$46.6 {\pm 1.0}$	$38.9{\pm}0.5$	62.7
MTL^{\dagger} [53]	84.6 ± 0.5	$77.2{\pm}0.4$	$66.4 {\pm} 0.5$	$45.6{\scriptstyle \pm 1.2}$	$40.6 {\pm} 0.1$	62.9
Mixup [†] [54–56]	84.6 ± 0.6	$77.4{\pm}0.6$	68.1 ± 0.3	$47.9{\pm}0.8$	$39.2 {\pm} 0.1$	63.4
MLDG [†] [17]	84.9±1.0	$77.2{\pm}0.4$	$66.8 {\pm} 0.6$	$47.7{\scriptstyle\pm0.9}$	$41.2 {\pm} 0.1$	63.6
Fish [25]	85.5 ± 0.3	77.8 ± 0.3	$68.6 {\pm} 0.4$	45.1 ± 1.3	42.7 ± 0.2	63.9
ERM [‡] [57]	84.2 ± 0.1	77.3 ± 0.1	67.6 ± 0.2	47.8 ± 0.6	44.0 ± 0.1	64.2
SagNet [†] [29]	86.3±0.2	77.8 ± 0.5	68.1 ± 0.1	48.6 ± 1.0	40.3 ± 0.1	64.2
SelfReg [58]	85.6 ± 0.4	$77.8{\scriptstyle \pm 0.9}$	67.9 ± 0.7	$47.0{\pm}0.3$	$42.8{\scriptstyle\pm0.0}$	64.2
CORAL [†] [13]	86.2 ± 0.3	$78.8{\scriptstyle \pm 0.6}$	$68.7{\pm}0.3$	47.6 ± 1.0	$41.5{\scriptstyle\pm0.1}$	64.5
mDSDI [59]	86.2 ± 0.2	79.0 ±0.3	69.2 ± 0.4	48.1 ± 1.4	$42.8 {\pm} 0.1$	65.1
MIRO	85.4 ± 0.4	79.0 ±0.0	70.5 ± 0.4	50.4 ±1.1	44.3 ± 0.2	65.9
Combined with SWA	D [34]					
ERM + SWAD [‡]	88.1±0.1	79.1±0.1	70.6 ± 0.2	50.0±0.3	46.5 ± 0.1	66.9
$CORAL + SWAD^{\ddagger}$	88.3±0.1	$78.9{\scriptstyle \pm 0.1}$	71.3 ± 0.1	$51.0{\scriptstyle \pm 0.1}$	46.8 ± 0.0	67.3
MIRO + SWAD	88.4+0.1	79.6 +0.2	72.4+0.1	52.9+0.2	47.0±0.0	68.1

<u>Gulrajani and Lopez-Paz. "In search of lost domain generalization" ICLR 2021.</u> <u>Cha, et al. "SWAD: Domain Generalization by Seeking Flat Minima." NeurIPS 2021.</u>

Cha, et al. "Domain Generalization by Mutual-Information Regularization with Pre-trained Models" ECCV 2022.

Cross-bias generalization benchmark.

- It depends on how we make benchmark datasets (i.e., training and test sets)
- If we want to check whether a model performs well under significant distribution shifts (e.g., every car and boat is in the sky), then we have to test **"domain generalization"** benchmark.
 - These type of test sets are often called as "out-of-distributed" datasets.
- If we want to check whether a model can perfectly ignore shortcut biases even under the severely biased training dataset, "cross-bias generalization" benchmark would be helpful.

Bahng, et al. "Learning De-biased Representations with Biased Representations", ICML 2020

Cross-bias generalization benchmark.

- When bias labels and target labels are strongly correlated.
- For example, when background color (bias label) is strongly correlated to digit (target label).
- We aim to train a model without looking at background, but digit itself.

Bahng, et al. "Learning De-biased Representations with Biased Representations", ICML 2020

Cross-bias generalization vs. domain generalization

- Cross-bias generalization focuses on when "bias and label are correlated"
- Domain generalization focuses on when "a new bias appears"

Cross-bias generalization vs. domain generalization

Cross-bias generalization benchmark.

- When bias labels and target labels are strongly correlated.
- Gender (bias label) is strongly correlated to age (target label).

Training dataset

Test dataset

Lee, et al. "Learning debiased representation via disentangled feature augmentation" NeurIPS 2021

How can we evaluate if a model successfully avoids SL?

- Unfortunately, collecting "perfectly de-biased dataset" is extremely difficult, and the existing benchmarks are relatively "toy-setting" compared to real-world applications.
- We have to pay attention more to build the de-biased dataset to evaluate if a model avoids SL.

A more realistic evaluation benchmark is still an open question.

- It is important to design a more "realistic" and "practical" evaluation benchmark.
- But, it should be controllable and reproducible as well.

Cross-bias

Cross-domain

How can we make "De-biasing" methods work in practice?

Model	Clean	Unbiased Acc [1]	ImageNet-C [14]	ImageNet-A [16]	Occlusion
Vanilla (ResNet-18 [13]) [†]	90.8	88.8	54.2	24.9	71.3
Biased (BagNet-18 [2]) [†]	67.7	65.9	31.7	18.8	59.7
LearnedMixin + H [6] ^{\dagger}	64.1	62.7	27.5	15.0	33.5
RUBi [3] [†]	90.5	88.6	53.7	27.7	71.3
ReBias [1] [†]	91.9	90.5	57.5	29.6	73.4
LfF [29]	93.2	92.0	57.8	28.1	77.0
CutMix [40]	<u>93.8</u>	91.8	54.6	27.1	83.1
Mixup [42]	93.2	91.4	61.5	33.4	<u>77.9</u>
Stylized ImageNet [11] [†]	88.4	86.6	61.1	24.6	64.4
StyleAugment	<u>93.8</u>	<u>92.6</u>	<u>65.3</u>	29.6	73.0
StyleAugment + AdamP [17]	95.9	94.8	72.5	<u>32.1</u>	75.8

Table 1: Comparison of state-of-the-art de-biasing and augmentation methods on the ImageNet-9 validation dataset. We measure the ImageNet-9 top-1 validation accuracy (Clean), the unbiase accuracy using texture clustering (Unbiased Acc) following Bahng *et al.* [1], ImageNet-C top-1 accuracy, ImageNet-A top-1 accuracy, and the top-1 accuracy on occluded samples. The first and the second best methods are denoted in **bold numbers** and <u>underlined numbers</u>. The rows with [†] denotes the same weights from Bahng *et al.* [1].

Chun, et al. "StyleAugment: Learning Texture De-biased Representations by Style Augmentation without Pre-defined Textures", ArXiv preprint.

Conclusion of Part 2

- Bias labels are not fully accessible because of the annotation costs, or the ambiguous nature of biases
- If we only have partially annotated bias labels, then CGL can be helpful
- If we know when model is biased, then "de-biasing from biased model" framework (e.g., ReBias) can work well
- There are many possible training-evaluation scenarios for shortcut learning problem (cross-bias generalization, domain generalization, ...)
- We have to study this problem in various viewpoints!

Concluding remark and future work

- Data collection should be considered and designed to *avoid undesirable dataset biases* in the dataset (e.g., "lung pics and hospital tokens")
- We may need additional annotation process to collect *"bias labels of concern"* (e.g., ethical labels such as ethnicity, gender or income level)
- Algorithm should reflect the task itself and should preferably be *unbiased* sometimes we need a different decision process, e.g., stochastic one
- Evaluation protocol should consider the *real-world deployment scenario* such as distribution shifts, not only "in-distributed scenario".
- Human should be considered in the machine learning model development pipeline loop, i.e., *human-in-the-loop* is required

Thanks!

Acknowledgements: This talk is inspired by <u>"Unreasonably shallow deep learning"</u> provided by professor Kyunghyun Cho. and <u>awesome research</u> project "Shortcut Learning in Deep Neural Networks" by Geirhos, et <u>al.</u> Many slides are borrowed from my previous talks.